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Introduction

How much and which of the axioms at the foundation of mathematics can be stated
in a simple game theoretic formalism? To answer this question, one has to investigate
areas of mathematical logic such as the foundation of mathematics, reverse mathematics,
determinacy of infinite games and many others that overlap with the present thesis. It
all traces back to an old story.

At the beginning of the 19th century, the mathematician David Hilbert wanted to answer
the disturbing paradox in the theories of the foundation of mathematics from Frege and
Russel through his famous program. The aim was to prove once and for all that math-
ematics, built based on arithmetic and finitary concepts, was complete and consistent.
The hopes of accomplishing such a program were destroyed in 1930 and 1931 when Kurt
Gödel posted the proofs of his first and second incompleteness theorem, which became
famous nowadays. However, even if the enterprise to find universal and unique founda-
tions for all mathematics was shut down, these theorems also opened the door to the
analysis of various families of theories in which a certain amount of mathematics can be
carried in. Furthermore, the theories T such as the ones that satisfy the hypotheses of
Gödel’s incompleteness theorems were the kind of ones that every mathematician used
to do mathematics with. Thus, it was the beginning of growing interest in the problems
indemonstrable from T given by Gödel’s theorem.

An example of such a question that was early on treated is: Given a family of sets of
reals, do the sets of this family have nice measurability properties? The question was
usually asked about projective sets ~Σ

1
n

in the Baire space. That is where the study of
determinacy, an axiom about infinite games in ωω introduced by Mycielski and Steinhaus
began to gain interest when Solovay and Blackwell used it to solve similar questions
of descriptive set theory (see [26, 40]) in 1967. It was only a matter of time before
other mathematicians like Addison, Martin, Moschovakis and others used the axiom
of determinacy as a starting point to demonstrate, for example, the measurability of
some class of projective sets. From this point of view, determinacy axioms are very
related to the existence of large cardinals, as it is exposed in the book of Kanamori
on the subject [25], the historical survey of Larson [31] or the recent paper of Sandra
Müller [41]. There are plenty of examples of undecidable questions in ZFC, also in
various other fields than descriptive set theory like the continuum problem in set theory,
the Whitehead problem [46] in group theory, the Borel conjecture [9] in measure theory,
Kaplansky’s conjecture on Banach algebras [8], the Brown-Douglas-Fillmore problem [13]
on operator algebras, etc.
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Another child of this collapse of Hilbert’s program which also arises in the 1970s is
“reverse mathematics” under the impulse of Friedman [15, 16] and Simpson [48]. This
new field of logic, a program in the foundation of mathematics, has as aim to answer the
question: “What are the appropriate axioms to prove the theorems of mathematics?”.
The stronger the axioms, the more difficult it is for a system to meet its requirements.
For that reason, the article “Reverse Mathematics: The Playground of Logic” [47] lives
up to its name, since reverse mathematics is like a mathematical treasure hunt; trying to
find the largest set of systems in which a result remains true. This hunt is typically led
within the realm of second-order arithmetic, where everything is natural numbers and
sets of natural numbers. This language can express most ordinary, or undergraduate
mathematics. On the other hand, the traditional approach to expressing mathematical
objects is through set theory, specifically the theory of Zermelo and Fraenkel inside of
which the idea of reverse mathematics can be generalised.

In the present thesis, we will try to contribute to answering the questions: What are
the appropriate axioms to do mathematics? In order to prove determinacy? What are
the appropriate determinacy axioms for expressing part of the theory of second-order
arithmetic? etc. More precisely, we will focus on the limit of determinacy in second-order
arithmetic and the bound that is exhibited in the paper of Montalbán and Shore [38] who
proved two theorems of interest from a reverse mathematics point of view. The first one
establishes an upper bound in terms of provability strength in second-order arithmetic
when comparing comprehension schemes to determinacy.

Theorem 1. For each m ≥ 1, Π1
m+2-CA0 ⊢ (Π0

3)m-Det.

The second one is a close lower bound in the same terms.

Theorem 2. For every m ≥ 1, ∆1
m+2-CA0 ̸⊢ (Π0

3)m-Det.

Even if we don’t get a natural axiomatic statement equivalent to (Π0
3)m-Det, in the

sense of reverse mathematics they give a narrow gap inside of which this weak level of
determinacy is located. This way, we have a precise idea of the very limit of determinacy
of infinite games that is provable only using natural numbers and sets of natural numbers
(Z2). Along the way, it shows that determinacy is an example of natural theorems
provable in Z2 that requires very strong subsystems of second-order arithmetic, while
the huge majority of them known so far can usually be proven by one of the big fives:
RCA0, WKL0, ACA0, ATR0 and Π1

1-CA0. In the end, we will wonder if the second theorem
is generalisable to third-order arithmetic and more.

As Martin highlights in his book about infinitely long games [35] and Montalbán and
Shore emphasize at the beginning of their paper, second-order arithmetic can be thought
of as ZFC− (ZFC without power set axiom) or ZC− +Σ1 replacement in a conservative
way, concerning a precise translation between statements in second-order arithmetic and
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set theory. To show their second theorem, Montalbán and Shore used set-theoretic mod-
els of V = L+ KP, constructible Kripke-Platek theory presented by Barwise in [3], with
some amount of separation and collection added so that it is a β-model of ∆1

m+2-
CA0. As Hachtman did in [17] to refine the result of Martin according to which Σ0

1+α+3
requires α+ 1 iteration of the power set axiom for α < ω1, this is the starting point of a
wilder question in the centre of this thesis: What is the limit of determinacy that we can
prove in arithmetic of nth order (2 ≤ n), thought as ZFC−+Pn−1(ω) exists? And to what
extent are the theorems of Montalbán and Shore generalisable?

Our aim throughout this thesis is to guide the reader from a very elementary level
of knowledge from the point of view of mathematical logic (basics of first-order logic,
model theory and set theory) to the cutting-edge research in the questions related to
the reverse mathematics analysis of determinacy axioms (for some Borel sets). This
is indeed the path that was followed by the writer during the redaction of the the-
sis.

In the first chapter, we will mainly set up all the preliminary notions. We define de-
terminacy and prove some well-known folklore results to familiarize ourselves with it.
Then we define second-order arithmetic and the big five, and we present the reverse
mathematics results of Steel [49]. Finally, in the last section of chapter 1, we expose the
results of the chapter about β-models of [48], showing how one can translate between
the formalism of set theory and second-order arithmetic, which is especially useful in
proving the theorems of Montalbán and Shore.

In the second chapter, we introduce all the necessary more advanced facts about set the-
ory and subsystems of second-order arithmetic that have to be used in these proofs.

Finally, in chapter 3, we present the proofs themselves, in both cases beginning with
a “warm-up” with an easier theorem following the same kind of idea. For the second
version, we propose a generalisation stated in the framework of the Kripe-Platek set
theory. The latter constitutes an original contribution of the thesis to the field, in
addition to a somewhat unique synthesis and introduction to this very specific subject
treated by Montalbán and Shore.

Let us end up this introduction with a quotation from Kurt Gödel, that casts a premon-
itory light on the study of axioms such as the ones of determinacy.

“There might exist axioms so abundant in their verifiable consequences, shed-
ding so much light upon a whole field, and yielding such powerful methods
for solving problems (and even solving them constructively, as far as that is
possible) that, no matter whether or not they are intrinsically necessary, they
would have to be accepted at least in the same sense as any well-established
physical theory.”

— Kurt Gödel in “What is Cantor’s continuum problem?” (1964), in Kurt Gödel’s
Collected Works, Vol. II, Feferman, Solomon, Eds.
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Chapter 1

Theories and Languages in which we
Play

In order to do mathematics, we need to encode precisely what we are talking about
in a formal language, by use of constant, function and relation symbols. These are
the atoms of any so-called mathematical object. Any universe giving an appropriate
interpretation of this language will then be called a structure for the language, a place
where mathematical objects can live. The outer world where this structure itself lives
is a metamathematical question to which everyone is free to give their answer, insofar as
the latter allows us to envisage such a structure. We can then use this language along
with a dedicated alphabet, logical connectives and quantifiers to state properties and
conjectures about these objects.

However, the work of a mathematician is not only to state properties but also to prove
them. To do so, like all other scientists, we need to set up a reasonable theory that
accounts for the behaviour of the objects we intend to model. The basic tenets of
such a theory are called its axioms. But unlike any other scientist, we will then only
use logical laws to derive properties of this theory from its axioms, which we call theo-
rems.

What characterises the abstract method of mathematics is that any theorem provable
from a theory in a particular language using our logical laws will be true in any world,
any structure behaving according to the rules of this theory, which we then call models of
the theory. This foundational and metamathematical fact is the completeness theorem
to which the soundness theorem is added. The interested reader can find further details
about these foundational concepts in [33] and [12].

It turns out that most mathematics can be unified, at least at first glance, in the language
of sets, LSet, which only has the one well-known relation symbol “∈” and where all
mathematical objects are understood as sets. The very powerful theory within which
most mathematicians then work is due to Zermelo and Fraenkel, using the logical rules
of classical logic, as we will always do in the course of this study. We now give a reminder
of its famous axioms. These are discussed in detail in [23], where the reader may also
find the basic development of classical set theory such as ordinal numbers, transfinite
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induction, etc. In the following, we assume familiarity with the topics discussed in [12,
23,33] that is, fundamentals of logic, set theory and model theory, for which the previous
paragraphs act as a popularizing trailer.

Definition 1.0.1 (ZFC). The LSet-theory axiomatized by the axioms

Extensionality: If X and Y have the same elements, then X = Y ,

Pairing: The unordered pair of X and Y , written {X, Y }, is a set,

Union: The union ⋃
X is a set,

Regularity: If X is nonempty, then it has an ∈-minimal element,

Separation: The collection {x ∈ X | ϕ(x)}, of the elements of X satisfying ϕ
is a set,

Replacement: If ϕ(x, y) defines a function on X, then its range,
{y : (∃ x ∈ X) ϕ(x, y)}, is a set,

Infinity: There exists an inductive set,

Power set: The power set P(X) is a set,

Choice: If no element of X is the empty set, then one of the choice func-
tions of X is a set,

is called Zermelo-Fraenkel with choice.

Concerning the axiom of infinity, an inductive set is a set S such that

∅ ∈ S and (∀x ∈ S) x ∪ {x} ∈ S.

Such a construction will naturally give birth (at least) to the standard set of natural
numbers, ω, indubitably an infinite set. We point out that, in the present setting,
the axiom of pairing can be deduced from infinity, separation and replacement
together. Indeed, we can use separation to extract from S a set with two elements, lets
say 2 = {0, 1} and then apply replacement with the formula

ϕ(x, y) ≡ (x = 0 ∧ y = X) ∨ (x = 1 ∧ y = Y )

to get the pairing{X, Y }. Furthermore, this gives us an insight into the essential value
of replacement in itself, used for such glueing (in an infinite fashion). However, we
will keep pairing for the sake of uniformity with the remaining of the present study,
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because in weaker set theories, we won’t always take infinity for granted. We can
reason similarly to show that in some not-too-demanding contexts (as the majority of
models of set theory), we can deduce separation from replacement as well. The
axiom of choice, in particular, can lead to some astonishing results, such as the famous
Banach-Tarski theorem (see [1]). Despite that, it is essential in the proof of many useful
algebraic and analytic results. However one can decide to work without it and the theory
thus formed will be called ZF. Other variants are, for instance, ZFC−, where we remove
Power set, or ZC if we remove Replacement. Sometimes ZFC− also has a weaker
version of Replacement that we will see in the next chapter.

The reader can find an extensive development of the classical set theory ZFC in the book
of Kuratowski and Mostowski [30].

Remark 1.0.2. When we state an axiom of a theory, we always take implicitly the
universal closure for the free variables and formulae of the language of this theory (they
may have parameters, encoded by free variables, if not specified otherwise). Taking the
universal closure on formulae means the axiom is an infinite set of sentences, called an
axiom scheme, consisting of all statements of itself, each of them determined by the
choice of any suitable formula to state it.

1.1 Playing Infinite Games

Despite the powerful axioms of ZFC, it appears that some natural problems, in particular
in descriptive set theory, remain unsolvable, even with strong hypotheses such as the
existence of measurable cardinals (see [25, 40]). This led some mathematicians such
as Blackwell in 1967 and Addison and Martin after him, to use some unexpected kind
of axioms of interest called determinacy axioms. These were first stated by Mycielski
and Steinhaus in 1962, though already used before in the 20th century in the proof of
theorems aiming to avoid some of the more unpleasant consequences of Choice, and
will be our main subject of interest for the remainder of this study. The inspiration for
it comes from game theory, so let’s first define an important tool of this field, namely
trees. The results presented in this section can be found in any good book of descriptive
set theory like [26] or [40] and the historical context of the arising of determinacy is
discussed in [31].

Definition 1.1.1 (Long sequences). Let BA symbolise the set of functions f : A → B,
for any sets A and B. We also write

A<β :=
⋃
α<β

Aα

for any ordinal β. Finally, |f | will stand for the function’s domain (usually, an ordinal).
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1. For any ordinal numbers α < β, given a function f : β → A, we define

f [α] : α → A

as the α-length initial segment of f . Conversely, an extension of f is any function
in which f is an initial segment.

2. Given f : α → A and α < β, the β-cylinder around f is

JfKβ := {g ∈ Aβ : g[α] = f},

the set of all extensions of f to β. We will omit the β subscript when the context
is clear.

3. For any ordinals β, γ, given f : β → A and g : γ → A, we define

f⌢g : β + γ → A :

η 7→

 f(η) if η < β,

g(κ) if η = β + κ for some κ,

the concatenation of f and g.

4. We say that f is compatible with g if for α = min(|f |, |g|),

f [α] = g[α].

Remark 1.1.2. We will write ⟨m0,m1, . . .mk−1⟩ for a finite sequence of length k.

We give more than enough to define the game interesting us, but these general definitions
are useful in some enlarged studies of the present subject and will give us a better
understanding of the logic of the trees we are about to define. However, for our concrete
purpose, the reader can imagine β = ω since it will always be the case in the questions
that we will treat further.

Definition 1.1.3 (Long trees). Given an ordinal β and a set A, a β-tree on A is a
subset T ⊆ A<β such that

∀τ, σ ∈ A<β, σ ∈ T and τ ⊆ σ → τ ∈ T.

Elements of a tree are called nodes and in the case above, if σ = τ⌢⟨a⟩, for some a ∈ A,
σ will be called a child node of τ and τ the (unique) mother node of σ.

1. A function f : β → A is a (complete) path across (or a branch of) T if

∀α < β, f [α] ∈ T.

The set of branches of T is written [T ].
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2. A function satisfying the same condition but with domain some ordinal δ < β will
be called a pseudo-path trough [T ].

3. The bouquet around a node σ in T , JσKT , is the set JσKβ ∩ [T ]. We will omit the
T subscript when the context is clear.

4. A terminal node (or leaf) of T is a node having no proper extension in T .

5. The tree T is said to be pruned if every node in it extends in a branch across it, if
β is a limit ordinal that is, T contains no terminal node and there are no pseudo-
paths of length δ < β for δ a limit ordinal. In other words, all the pseudo-paths we
can follow through T are branches.

6. A subtree of T is a tree included in T . Given a node σ ∈ T , the offspring of σ is
the following subtree

Tσ := {τ ∈ T : τ is an initial segment or an extension of σ}.

7. If β is infinite, the tree T is said to be perfect (or bushy) if it is pruned and any
node in it has two proper incompatible extensions.

In the scope of the exposition of these tree-related concepts let us prove the following
simple lemma.

Lemma 1.1.4. Let T be a β-tree on a set A, then if T is bushy the bouquet around any
node of length α < |β| in T has cardinality 2|β|.

Proof. Given a bushy tree T and a node σ ∈ T , we label its two distinct proper in-
compatible extensions by 0 and 1. By iterating this process from σ of length α < |β|,
we come up with a copy, up to the merging of some nodes, of the full binary ω-tree
(that depicts figure 1.3). Then, since every pseudo-path in T is a complete path, we can
extend our tree to a copy of the full |β|-tree, with the same process iterated a transfinite
amount of time. Since this copy is contained in the offspring of any σ, 2β is a lower
bound for the cardinality of any bouquet in this β-tree. It is also clear that this is an
upper bound, concluding our proof.

Notice that even if β is a cardinal, this is not a sufficient condition since there could still
be an infinite pseudo-path that is not a path in T but such that every node of it also
extend in enough complete paths. Figure 1.1 depicts an example of a finite binary tree
and of a finite tree on the natural numbers.

We now define the game as follows. Given a set A, Anais and Bruce want to play a two-
player game. To do so, they are playing one after the other and their moves are elements
of A. The rules of the game are described by an ω-tree T , containing all the finite
sequences of moves playable in this setting. We will always suppose T to be nonempty
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⟨ ⟩

⟨1⟩

⟨1, 1⟩

⟨1, 1, 0⟩⟨1, 0⟩

⟨0⟩

⟨0, 1⟩

⟨ ⟩

⟨9⟩⟨7⟩

⟨7, 22⟩

⟨7, 22, 1⟩⟨7, 22, 0⟩

⟨7, 1⟩

⟨7, 1, 9⟩

⟨3⟩

⟨3, 2⟩

Figure 1.1: Examples of finite trees.

A: a0 a2 a2n

· · · · · · (ai)i<ω
?
∈ X

B: a1 a3 a2n+1

Playable move condition: ∀n ⟨a0, a1, . . . an⟩ ∈ T ⊂ A<ω

Figure 1.2: An infinite game.

and pruned. Finally, they agree on a payoff set X ⊆ Aω. Anais plays first and wins
if, after ω moves, the so-formed sequence belongs to the payoff set. Otherwise, victory
belongs to Bruce. To emphasize the importance of the fact that a player plays first or
second in a definition or a construction, we will rather use the denominations “player
I” and “player II” for the convenience of notations and abstraction. Otherwise, we keep
calling them Anais and Bruce for the convenience of readability and exemplification even
if by convention –and gallantry– Anais will always play first and Bruce second. We give
a representation of this game in figure 1.2.

For example, A can be the set of natural numbers ω but the playable moves are only 0
and 1. Then, if X is, let’s say, the set of sequences that begin by 0, Anais has a winning
strategy consisting only of playing 0 as her first move. The tree T of legal positions is
the one presented in figure 1.3.

In general, a strategy for Anais is a way to respond to Bruce’s moves by following the
rules of the game. To define a strategy, notice that it is player II’s turn to play after
an odd-length sequence in T and conversely, player I’s turn to play after an even-length
node in T .

Definition 1.1.5 (player I’s strategies). Given such a game G(T,X), a strategy SI for
the first player will be defined as a subtree of T such that

1. Every even-length node has one unique child, the response of player I,

15



⟨ ⟩

⟨1⟩

⟨11⟩

⟨111⟩

· · ·· · ·

⟨110⟩

· · ·· · ·

⟨10⟩

⟨101⟩

· · ·· · ·

⟨100⟩

· · ·· · ·

⟨0⟩

⟨01⟩

⟨011⟩

· · ·· · ·

⟨010⟩

· · ·· · ·

⟨00⟩

⟨001⟩

· · ·· · ·

⟨000⟩

· · ·· · ·

Figure 1.3: The infinite tree of binary playable moves.

⟨ ⟩

⟨0⟩

⟨01⟩

⟨011⟩

· · ·· · ·

⟨010⟩

· · ·· · ·

⟨00⟩

⟨001⟩

· · ·· · ·

⟨000⟩

· · ·· · ·

⟨ ⟩

⟨0⟩

⟨01⟩

⟨010⟩

· · ·· · ·

⟨00⟩

⟨000⟩

· · ·· · ·

Figure 1.4: Ana’s 0-quasistrategy and 0-strategy.

2. Every child of an odd-length node that lies in T lies also in the strategy, i.e. the
strategy doesn’t restrain player II’s moves.

We write the set of strategies for player I, SI(T,X). A strategy S is said to be winning
if [S] ⊆ X, i.e. in any run of the game where player I plays according to S, she wins. In
such a case, we say that any position during the play of the game is consistent with the
strategy. A quasistrategy for her is defined in the same way, but the player I’s response
has not to be unique.

A strategy for Bruce will be defined mutatis mutandis. Note that, at any stage of the
game the previous moves are common knowledge for both players. This is a game of
perfect information. Equivalently, note that we can define a strategy for I (II) as a
function from even-length (odd-length) sequences of T to the answer of I (II) in A such
that this is a playable move at this point. In our last example, a (winning) quasistrategy
for Anais is the left tree of figure 1.4. On the other hand, a (winning) strategy for Anais
is depicted by the right tree of figure 1.4 which consists in always playing 0 regardless
of Bruce’s move.

We now present the proof –using ZFC axioms– of a simple known result, nevertheless a
very foundational one. From now on [T ] will be endowed with topology of which a basis
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is formed by taking all the bouquets around its nodes.

Theorem 1.1.6 (Gale-Stewart). Let G(T,X) be a game as defined above with T a
nonempty pruned ω-tree on A and X ⊆ [T ] closed or open. Then either Anais or Bruce
has a winning strategy.

Proof. We prove that if X is closed, and Bruce has no winning strategy, then Anais has.
The case with X being open is similar. We always assume the players are playing legal
moves according to T .

We will say that an even-length position p ∈ T –with Anais to play next– is non-losing
if Bruce has no winning strategy in the game with Tp for rules and

Xp = {x ∈ Aω | p⌢x ∈ X}

for payoff set. So ⟨ ⟩ is non-losing by assumption. Moreover, if p is non-losing, Anais
can make a move a2n such that, whatever move a2n+1 Bruce will be playing next, the
position p⌢⟨a2n, a2n+1⟩ is still non-losing. Indeed the negation of this assumption asserts
that p is losing.

The winning strategy S for Anais is then defined recursively. Let p be a position of
length 2n reached by a play of the game consistent with her strategy already defined
until there. By the preceding, Anais can choose one of the a2n ∈ A such that the next
even-length position will still be non-losing. For doing this for an arbitrary T and A, we
need to use choice.

Take any x ∈ [S], then if x ̸∈ X, X being closed, there is a basic neighbourhood
N containing x and disjoint from X. WLOG, we can assume N is of the form JpK
for some even-length initial segment of x. Then, p is a losing position for Anais, a
contradiction.

This first theorem about the determinacy of these games is the reason why the latter
are called “Gale-Stewart games”.

Given a set A, the axiom of determinacy for A, written ADA, states that whatever
sets T ⊆ Aω and X are, there will exist set that is a winning strategy either for Anais
or for Bruce. We then say that the game G(T,X) is determined. We always suppose
that T satisfies the hypotheses of the preceding theorem.

This statement is of course way stronger than the Gale-Stewart theorem since the payoff
sets X can be much more complicated than open or closed sets in the topology of [T ].
We will only focus during this study on the case of countable games (move from ω),
but the interested reader can find development about uncountable games in [19] or even
class-sized games in [20]. Even for A = ω in which case we simply write AD, assuming
the axiom of determinacy can yield quite strong theorems. To expose one of them we
first introduce the following notions of descriptive set theory.
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Definition 1.1.7 (Polish space). A topological space X is said to be Polish if

1. The space X is metrisable and complete for this metric,

2. There is some countable dense subset of X, that is, X is separable.

Putting the discrete topology on A, the product topology makes of Aω a metrisable com-
plete space whose basic open sets are the ω-cylinders of finite sequences in A. We assume
familiarity with the basics of topology (see for example [32]).

Lemma 1.1.8. Given a set A then with the topology described above

1. Aω is a metrisable complete space,

2. A<ω is dense in Aω,

where A<ω is seen as a subset of Aω by completing every finite sequences with zeroes. In
particular if A is countable then Aω is Polish.

Proof. We define

d : Aω × Aω → R,

((xn)n<ω, (yn)n<ω) 7→
∑
n<ω

1 − δ(xn, yn)
2n+1 ,

as our metric on Aω, its metric properties being straightforward from the definition of the
Kronecker delta, δ(xn, yn) being equal to 1 if xn = yn and 0 otherwise. Using geometric
sums calculus, we observe the following properties. Given x, y ∈ Aω, x[k] = y[k] iff
d(x, y) < 1/2k for all i < ω. Let us prove that (Aω, d) is complete. Let (xn)n<ω being a
Cauchy sequence of sequence in A, i.e.

∀k ∃n0 ∀m ≥ n0(k) d(xn0 , xm) ≤ 1
2k .

Thus by our preceding observation xn0(k)[k] = xm[k]. And the sequence

x̄(k) := xn0(k)(k),

is the limit of (xn)n<ω in Aω. We naturally (with respect to d) include A<ω in Aω by
concatenating any finite sequence σ with an infinite sequence of zeroes. By definition
the topology is generated by the family of open sets

{Ωa
k : a ∈ A, k < ω}, where Ωa

k := {(xn)n<ω ⊆ Aω | xk = a}.
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We now consider the basis consisting of all the ω-cylinders around a finite sequence. We
have the following equalities on the open sets of the respective basis:

Ωa
k =

⋃
|σ|=k

Jσ⌢aK; JσK =
⋂
ai∈σ

Ωai
i ;

for any k < ω, a ∈ A and σ = ⟨a0, a1, . . . ai, . . . ak⟩ ∈ A<ω. Hence we have proved that
the metric, inducing the topology of the ω-cylinders by our first remark on the metric,
also induces the product topology: we have proved point 1. It is also clear that any Ωi

contains a finite sequence, proving point 2.

Therefore we speak about the Borel hierarchy ofAω, which we define below.

Definition 1.1.9 (Borel hierarchy). On any topological space, we define inductively the
following hierarchy of sets:

1. The ~Σ
0
1 sets are the open sets;

2. The ~Π
0
1 sets are the closed sets;

3. For any ordinal 1 < α < ω1, where ω1 denotes the first uncountable ordinal, a set
Y is ~Σ

0
α

if there are

A0, A1, . . . An, . . . such that Y =
⋃
n<ω

An,

with each An being ~Π
0
αn

for some αn < α;

4. A set is ~Π
0
α

if it is the complement of a ~Σ
0
α

set.

We also call ~∆
0
α

sets the ones being both ~Σ
0
α

and ~Π
0
α

sets.

A set will be called Borel if it is ~Σ
0
α

for some α < ω1. Indeed, no new sets are defined
beyond countable ordinals. These sets are usually defined as the minimal ~Σ-algebra
containing the open sets. This hierarchy shows how to construct them, using a trans-
finite process. For the last definition, we use the Baire space, the universal Polish
space

N := ωω,

endowed with the product topology on the copies of the discrete spaces ω. We call
it universal since every Polish space can be viewed as a closed subset of N (see first
chapter of [40]). Precisely, every perfect Polish space is Borel isomorphic with the Baire
space, where “perfect” means “without isolated points” and a Borel isomorphism has
the property the preimage of a Borel set is still Borel. Using continued fractions like
in [22], we can show that this space is homeomorphic to the irrational numbers of R, we
will hence identify it to the real numbers very often.
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Figure 1.5: The Borel and projective hierarchies.

Definition 1.1.10 (Projective hierarchy). On any topological space X, we define induc-
tively the following hierarchy of sets:

1. A set is ~Σ
1
1 or analytic if it is the range of a continuous function f : N → X;

2. A set is ~Π
1
1 or coanalytic if it is the complement of an analytic set;

3. For any natural number 1 < n < ω, a set is ~Σ
1
n

if it is the range of a continuous
function f : Y → X, with Y being a ~Π

1
k

set for some k < n;

4. A set is ~Π
1
n

if it is the complement of some ~Σ
1
n

set.

5. A set is ~∆
1
n

if it is both a ~Σ
1
n

and a ~Π
1
n

set.

A set will be called projective if it is ~Σ
1
n

for some n < ω. Since we will work with the Baire
space in the following, we will only consider such hierarchies in Polish spaces.

Remark 1.1.11. From now on, when stating a theorem or a proposition, we will often
indicate between parentheses, inside of which theory we claim the result to be provable.
This indication could be preceded by the name of the theorem.

The following theorem gives the link between the two hierarchies of Borel and projective
sets.

Theorem 1.1.12 (Suslin, ZF). For any Polish space, the Borel sets are exactly the sets
that are both analytic and coanalytic, that is, the ~∆

1
1 sets.

Based on this last theorem, we can unify the two hierarchies into a scale of complexity of
definable sets in Polish spaces. Furthermore, we can show that this scale is monotone as
depicted in figure 1.5: a standard result proven for instance in [40].

A set X ⊆ R is Lebesgue measurable if for each A ⊆ R,

µ∗(A) = µ∗(A ∩X) + µ∗(A ∩ X̄), (1.1)

where µ∗ stands for the outer measure of a set of real numbers, i.e. the infimum on
the volume of coverings using intervals. For example any union of intervals or even any
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analytic set (see definition 1.1.10) is Lebesgue measurable. In such a case, we write µ for
taking the measure of the set, which is equal to its outer measure. More details about it,
including the proposition 1.1.13, can be found in [23], see also [7] for a more specialized
book.

Although ~Σ
1
1 sets are Lebesgue measurable, as Lusin said, “one does not know and

one will never know” about the measurability of ~Σ
1
2 sets. This is where the hypothesis

about the existence of large cardinals comes into play. If we want to get more results
about measurability, we need to assume more axioms than those we already supposed
by working in ZFC.

Proposition 1.1.13 (Jan Mycielski and S. Świerczkowski (1964), ZF + AD). Every set
of real numbers is Lebesgue-measurable.

The proof of this very early result, in a paper by Jan Mycielski and S. Świerczkowski [43]
and follows from the following lemma, also provable assuming AD. We call a set null if
its outer measure is 0.

Lemma 1.1.14. Let S be a set of real numbers such that every measurable Z ⊆ S is
null, then S is null.

To make use of the axiom of determinacy we define the covering game.

Definition 1.1.15 (The covering game). Let S ⊆ R and ϵ > 0. The covering game of
S is defined as follows.

Anais plays binary moves and Bruce natural numbers, this leads to a tree T ⊊ ω<ω

defining the rules of the game.

Given f ∈ 2ω, we define the real

f̄ = d(0, f), (1.2)

with d as in the proof of lemma 1.1.8. For each n < ω we define

Kn =
G ⊆ R | G =

⋃
j<k

Ij for some k < ω and µ(G) ≤ ϵ/22(n+1)

 ,

where the Ij’s are intervals with rational endpoints, hence Kn is countable and we denote
by (Gn

k)k<ω, an enumeration of Kn.

The payoff set X ⊆ N is defined by the sequences f such that

a := f̄|I ∈ S and a ̸∈
∞⋃
n=0

Gn
f|II(n),

where f|I(n) := f(2n) and f|II(n) := f(2n+ 1).
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Note that the operation 1.2 is surjective on [0, 1] (it suffices to use the infinite binary
expansion of these numbers).

Proof of lemma 1.1. Because of the definition of outer measure, we can assume S is
contained in a finite interval, WLOG we assume S ⊂ [0, 1]. We first show that Anais
has no way to get a winning strategy while playing the covering game.

Consider a winning strategy ~Σ for player Anais. We can extract from it a function

f : N → R;
b 7→ x̄|I,

where x is the result of a play of the covering game when Anais follows ~Σ and x|II = b.
The function f is the tool that helps us to verify Anais effectively wins, given any play
b of Bruce. It is easy to see that f is continuous, hence Z := f(N ) is analytic and then
measurable. Since ~Σ is winning, Z ⊆ S and then, by hypothesis, is null. However, a
null set can be covered by a countably infinite union

∞⋃
n=0

Hn such that ∀n < ω Hn ∈ Kn.

This way, playing (bi)i<ω such that Gn
bi

= Hi for all i, Bruce can win while Anais is still
following her strategy, a contradiction.

Now we make use of AD to get a winning strategy for Bruce since the covering game
is determined. Consider such a winning strategy τ for Bruce. For each finite binary
sequence of Anais’ moves s = ⟨a0, a1, . . . an⟩, following τ leads Bruce to play some bs as
(n+ 1)st answer to the playing of Anais. Lets denote by Gs, Gn

bs
∈ Kn. By surjectivity

of the operation 1.2 we can associate to each a ∈ S the set Ba of its infinite binary
expansions. Since τ is winning, for every a ∈ S

a ∈
⋃

{Gs : s is in initial segment of any f ∈ Ba} and then,

S ⊆
⋃

{Gs : s ∈ 2<ω} =
∞⋃
n=1

⋃
s∈2n

Gs.

By definition, for every n ≥ 1, and s of length n, µ(Gs) ≤ ϵ/22n, hence

µ(
⋃
s∈2n

Gs) ≤ ϵ

22n · 2n = ϵ

2n .

It follows then that

µ∗(S) ≤
∞∑
n=1

ϵ

2n = ϵ.

Since ϵ > 0 was arbitrary, S is null.
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Proof of proposition 1.1.13. Let X ⊆ R. It follows easily from the definition of the outer
measure that there exists a measurable set A containing X such that each measurable
set Z ⊆ A∩ X̄ is null. Then, by the preceding lemma µ∗(A∩ X̄) = 0. Given any Y ⊆ R
we now show equation 1.1 is verified. Note that we always have

µ∗(Y ) ≤ µ∗(Y ∩X) + µ∗(Y ∩ X̄)

so we only have to prove the other equality:

µ∗(Y ∩X) + µ∗(Y ∩ X̄) = µ∗(Y ∩X) + µ∗(Y ∩ X̄ ∩ A) + µ∗(Y ∩ X̄ ∩ Ā)
≤ µ∗(Y ∩ A) + 0 + µ∗(Y ∩ Ā)
= µ(Y ),

by the measurability of A, the result of the lemma and the obvious monotonicity of the
outer measure.

Consequently, regarding some non-measurable sets of reals constructible with the use
of Choice, (see for example [21]), we have ZF proving the inconsistency of Choice
with AD. However, it is worth noticing we can prove the countable version of the axiom
of choice with AD as it was proved first by Mycielski (see [23]). We will encounter a
more precise example of this phenomenon in the following section. Unlike this first very
powerful statement, we will be interested in this study in determinacy for “definable”
sets like those we just exposed above. Several properties on the concerned class of de-
finable sets are then implied by determinacy axioms in various fields of study like in
descriptive set theory as we already mentioned, but also topology [6], Polish group ac-
tions [4], harmonic analysis with sets of uniqueness [27], orbit equivalence [28], dynamical
systems [14], . . .

For example, as we have already proved, if we restrict the axiom of determinacy to payoff
sets that are open or closed, it is a consequence of ZFC (and thus not contradictory with
choice). We can prove better as the following theorem shows, which we won’t prove
here, emphasises the necessity of Replacement, added by Fraenkel to the original
set theory of Zermelo, and Power Set as discussed in the introduction of [5], where
one can find a study of the limits of the provability of determinacy in ZFC, and in
the book of Martin [35] which initially proved the theorem in [34]. By the limits of
determinacy, we mean the largest definable class of sets with which the determinacy
axiom is provable.

Theorem 1.1.16 (Martin (1975), Borel determinacy, ZFC). Let T be a nonempty pruned
tree on A and let X ⊆ [T ] be Borel. Then G(T,X) is determined.

On the other hand, one only needs a weaker version of Choice, namely the axiom of
dependent choice, to prove this result.
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Despite this result being somewhat optimal in ZFC, the study of determinacy for pro-
jective sets is a vast source of axioms for extensions for ZFC, closely related to large
cardinal hypotheses. For the latter, we refer to [36,54].

Let us finish this section with a point of view from infinitary logic, roughly speaking,
logic with infinite sentences, on determinacy. Observe that G(T,X), with T = A<ω,
is a win for player I (i.e. she has a winning strategy) if and only if the infinite sen-
tence

(∃a0)(∀a1)(∃a2)(∀a3) · · · ⟨an⟩n<ω ∈ X

holds. The same way, G is a win for player II iff

(∀a0)(∃a1)(∀a2)(∃a3) · · · ⟨an⟩n<ω ̸∈ X

holds. Consequently, the determinacy ofG is equivalent to the infinite sentence

¬[(∃a0)(∀a1) · · · ⟨an⟩n<ω ∈ X] ↔ (∀a0)(∃a1) · · · ⟨an⟩n<ω ̸∈ X.

This can be seen as a natural generalisation of the finite classical logical law

¬[(∃a0)(∀b0) · · · (∃ak)(∀bk)ϕ(a0, b0, . . . ak, bk)]
↔

(∀a0)(∃b0) · · · (∀ak)(∃bk)¬ϕ(a0, b0, . . . ak, bk)

for every formula ϕ, which by the way asserts the determinacy of games of length k. We
can see ϕ as the defining formula of some subset X in Aω. For instance, X could be a
Boolean combination of bouquets of nodes of length k. Thus, the determinacy of Borel
games teaches us that we can extend this classical logical law to an infinitary one, if ϕ
defines a Borel subset of Aω. On the other hand, Choice imply that this rule is false
for arbitrary set X, and ZF even prove that there are undetermined uncountable sets
(see [23] for the construction of such non-determined games).

1.2 Second-Order Arithmetic

Among the provable theorems within ZFC some theorems require much of the strength
of the axioms such as Borel determinacy. On the other hand, theorems such as the
intermediate value theorem or the Bolzano-Weierstrass theorem don’t require powerful
mathematical principles, even though they may use also the same kind of axioms for set
theory in their proof. Consequently, it is difficult to see, a priori, how we could classify
these theorems according to the difficulty of proving them. By this “difficulty” we mean
which are the minimal mathematical principles that must be assumed to prove them. A
satisfying answer to this questioning would be to dispose of one or multiple hierarchies
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of axiom systems, to assess the provability of the mathematical theorems and therefore
lead an analysis of their logical strength.

This study of the classification of mathematical theorems is the idea of reverse mathemat-
ics first introduced by Friedman ([15, 16]) and Simpson, who wrote a reference book on
the subject in collaboration with a lot of other researchers on the subject, [48]). A conve-
nient framework for this study is the two-sorted language of second-order arithmetic, the
weakest language in which we can implement most ordinary mathematics. It is the out-
come of the idea of “encoding” mathematical objects through natural numbers and sets
of natural numbers, over which two kinds of variables will range.

The idea of a code for a mathematical object already exists in the standard setting of
set theory, since we want to depict most accurately a concept through a simulacrum
expressed by the means of the chosen mathematical language. We cannot say this is the
real object, would it only exist! Considering the Von Neumann representation of natural
numbers, for example, it wouldn’t make sense to pretend that zero is, as a concrete
entity, the abstract empty set. This is just a code, deemed to simulate a concept: the
idea of what zero should be. In the scope of second-order arithmetic, because it is more
unusual, we will speak of the code of a mathematical object with the same meaning. For
instance, any countable object can be coded as a subset of natural numbers. However,
since it has a priori no intrinsic concrete existence, this code is not more a code than
its usual representation in set theory.

We will distinguish between the numerical variables m,n, k, l, . . . and set variables
X, Y, Z, S, . . . by use of capitalisation. The language of second-order arithmetic, fa-
miliar since early mathematical education, is L2 = {+, ·, 0, 1, <,∈}, where the function
and relation symbols have each their standard definition.

Definition 1.2.1 (Z2). Full second-order arithmetic theory Z2 is the L2-theory consisting
of the axioms of discrete ordered semi-ring

m+ 1 ̸= 0
m+ 1 = n+ 1 → m = n
m+ 0 = m
m+ (n+ 1) = (m+ n) + 1

m · 0 = 0
m · (n+ 1) = (m · n) +m
¬(m < 0)
m < n+ 1 ↔ (m < n ∨m = n)

that we will call the basic axioms plus the set induction axiom

(0 ∈ X ∧ ∀n (n ∈ X → n+ 1 ∈ X)) → ∀n (n ∈ X)

and the full comprehension scheme

∃X ∀n (n ∈ X ↔ ϕ(n)),

where X does not occur freely in ϕ.
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This last condition prevents us from contradictions generated by auto-references like
X = {n : n ̸∈ X}. Note also that the full comprehension scheme doesn’t give rise
to contradictions like in naive set theory. Indeed all the sets here are included in the
set X = {n : n = n}, which we will call N and plays the role of the universe for the
set of second-order arithmetic. Therefore we can view this last scheme as an instance
of separation for the set of natural numbers. This works well because we evolve in a
two-sorted language, we could also deal with an unbounded comprehension scheme, with
the variable “n” ranging on set variables in LSet, provided that we introduce a second
type of variables, commonly denoted “classes”, deemed to be collections of sets. In this
particular setting, all classes would be included in X = {n : n = n}, the class of all
sets.

Remark 1.2.2. The induction axiom with the full comprehension scheme proves the
full second-order induction scheme, stated for any L2-formula ϕ(n),

(ϕ(0) ∧ ∀n (ϕ(n) → ϕ(n+ 1))) → ∀n ϕ(n).

This could still be the case, even without full comprehension scheme, in any model whose
first-order part is the standard set of natural numbers ω. In general, we refer to the set
of natural numbers in a given L2-structure as N. The latter could contain non-standard
natural numbers, unlike ω.

Definition 1.2.3 (ω-model). Given an L2-theory T , an ω-model for T is a model whose
first order part is the standard set of natural numbers, ω.

We are now able to implement the reverse mathematics project. The aim is now to
restrain the complexity of the formulae one can use in the comprehension scheme to
create new sets, a crucial construction in any proof. This way, we will dispose of a
hierarchy of sub-theories of second-order arithmetic of increasing strength. First, we
have to define what we mean by “complexity”.

Definition 1.2.4 (Complexity hierarchy for L2-formulae). Given a formula ϕ(n), a
bounded numeric quantification of ϕ is a formula of the form

∀n (n < m → ϕ(n)) or ∃n (n < m ∧ ϕ(n)).

Thus, we call ∆0
0 the class of formulae of L2 containing the atomic formulae and closed

under ¬, ∧ and bounded numeric quantification. We then define the following hierarchy
of classes of formulae:

1. The Σ0
1 formulae are of the form ∃nθ(n) with θ a ∆0

0 formula;

2. The Π0
1 formulae are of the form ∀nθ(n) with θ a ∆0

0 formula;

3. For any natural number 1 < k < ω, a formula is Σ0
k if it is of the form ∃nθ(n)

with θ a Π0
k−1 formula;
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4. For any natural number 1 < k < ω, a formula is Π0
k if it is of the form ∃nθ(n)

with θ a Σ0
k−1 formula.

Finally, for any 1 ≤ k < ω, a formula is ∆0
k if it is equivalent to two formulae ϕ and ψ,

which are respectively Σ0
k and Π0

k. This latter equivalence depends on the model or the
theory in which we are reasoning. We say that a formula is arithmetical if it contains
no set quantifiers. Moreover, we define Σ1

k, Π1
k and ∆1

k formulae similarly, where the
domain of the quantifier are set variables and arithmetical formulae play the role of ∆1

0
formulae.

It is no coincidence that this definition looks very similar to definitions 1.1.9 and 1.1.10.
We can define the finite steps of the Borel and projective hierarchy of the Baire space N
by Σ0

k and Σ1
k formulae. It turns out that we can speak of any Polish space in second-order

arithmetic even if we cannot encode uncountable sets in general.

Taking any countable set A, provided that we dispose of an injection from A to N, we
can code A as a subset of N. For example, this is the case for the set of couples of
natural numbers, via the pairing function

f : (m,n) 7→ (m+ n)2 +m, which is injective since
∀m∀n f(m,n) < f(m,n+ 1) < f(m+ 1, n) < f(m+ 1, n+ 1).

We will therefore identify N×N to its image by the pairing function and write N × N ⊆ N.
This way we can also encode any subtree of N<N ⊆ N. Finite sequences, and in par-
ticular couples, of natural numbers are indeed very useful in the process of coding (and
we may need to include non-standard finite sequences if the considered model is not an
ω-model).

Remark 1.2.5. Note that we don’t have an extensionality axiom in second-order arith-
metic. The equality relation is only formally used between numerical variables. This
is convenient since this way we can speak of a set of natural numbers as well as some
countable set coded by this same set at the same time without identifying them, de-
spite the fact they have the same elements. That’s why it is not a problem to write
N × N ⊆ N.

Following Hilbert’s programme for the arithmetisation of mathematics, we can code
most of ordinary mathematics. For example, any element in a Polish space is the limit
of some Cauchy sequence (hence equality between them will be an equivalence relation).
Moreover, an open set will be coded as a subset U of A× Q+, where A denotes a dense
part of the Polish part. We should think of this code as the collection of the open
balls contained in the open sets. We will then say that x is an element of this open set
iff

∃(a, r) ∈ U such that d(a, x) < r,
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where d is the metric on the Polish space. We see that this condition is indeed Σ0
1.

Finally given a sequence A0, A1, . . . An, . . . of subsets of natural numbers, we can define
their union and intersection as the respective sets⋃

n

An = {a : ∃m (a ∈ Am)} and
⋂
n

An = {a : ∀m (a ∈ Am)}.

Therefore, we see that the link with the Borel hierarchy is obvious. From now on we
think alternatively and equivalently of a set by “the set itself” and the formula defining
it (a code for this set). Even if we cannot talk about arbitrary uncountable subsets of a
Polish space, it is often possible to code such sets which are definable. Concerning the
projective hierarchy, we can show that given a code A for an analytic set and a code
X for an element of the concerned Polish space, the formula X ∈ A is Σ1

1. The latter
enables us to finalise our analogy with the previously defined hierarchies. We can now
state the natural translation of the axiom of determinacy inside second-order arithmetic.

Definition 1.2.6 (Σ0
k determinacy). For all 1 ≤ k < ω we denote by Σ0

k-Det the axiom
stating that for any tree T ⊆ ω<ω and any Σ0

k formula ϕ(X) that is deemed to describe
the payoff set X̃ ⊆ ω of corresponding complexity, the game G(T, X̃) is determined.

The determinacy axiom for other complexity classes is of course defined similarly. Let
us now define some major sub-theories of second-order arithmetic.

Definition 1.2.7 (RCA0, ACA0, Π1
1-CA0). We define three L2-sub-theories of Z2. They

each consist of their basic axioms and the induction axiom for sets, plus a characteristic
occurrence of the comprehension scheme.

1. The theory of recursive comprehension, RCA0, consists of the basic axioms plus

∀n(ϕ(n) ↔ ψ(n)) → ∃X ∀n (n ∈ X ↔ ϕ(n)),

with ϕ and ψ being Π0
1 and Σ0

1 respectively; the comprehension scheme for, some-
how, the ∆0

1 formulae where X does not occur freely endowed with

(ϕ(0) ∧ ∀n (ϕ(n) → ϕ(n+ 1))) → ∀n ϕ(n),

the induction scheme for formulae ϕ that are Σ0
1.

2. The theory of arithmetical comprehension, ACA0 consists of the basic axioms plus
the comprehension scheme for formulae ϕ that are arithmetical and X does not
occur freely.

3. The theory of Π1
1 comprehension, Π1

1-CA0, consists of the basic axioms plus the
comprehension scheme for formulae ϕ that are Π1

1 and X does not occur freely.
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The subscript 0 in such an acronym for a theory of L2 is there to remind us of the
fact that the induction scheme axiom for formulae is a priori restricted as previously
discussed in remark 1.2.2.

Moreover, note that the formula used in the comprehension scheme, ϕ, even if arith-
metical, may contain free set variables other than X. They should be interpreted as
parameters for the defining formula.

Remark 1.2.8. Π1
1-CA0 proves the Σ1

1 comprehension scheme. Consider any Σ1
1 formula

ψ(n), then ¬ψ(n) is Π1
1 and so Π1

1-CA0 proves the existence of X̄ = {n : ¬ψ(n)}. Using
∆0

0 comprehension we now show the existence of X = {n : n ̸∈ X̄}.

It turns out that most undergraduate mathematics can be implemented in the theory of
arithmetical comprehension. For many theorems, even just recursive comprehension is
sufficient while some others require Π1

1 comprehension. We often denote them as formal
systems to emphasize their potential use as a metatheory, endowed with a recursive
construction of a formal language. Essentially, the soundness theorem and a version of
Gödel’s completeness theorem are provable in RCA0. This allows us to develop mathe-
matical logic in a reasonable perspective inside the theory –and consequently any model
of– RCA0. For this reason, it is even more relevant to call them formal systems, ac-
cordingly to their ability to simulate a large range of mathematics, including (weaker)
theories of L2 and some of their models.

Example 1.2.9. Recursive comprehension proves the intermediate value theorem. Arith-
metical comprehension proves Bolzano-Weierstrass’s theorem. Π1

1 comprehension proves
Cantor-Bendixson’s theorem.

To give an example more related to our main topic, ACA0 it is not strong enough to
prove open determinacy in the Baire space. Despite this fact, we can still get such a
result if we restrain ourselves to the Cantor space, 2ω, or games with a binary choice.
This is presented in the following result, where the “∗” superscript is used to remind us
of the restriction of our playground.

Theorem 1.2.10 (RCA0). ACA0 ↔ (Σ0
1)2-Det∗.

Here, we denote by a (Σ0
1)2 set, the difference of two open sets. This definition will be

generalized in by 3.1.5. In the paper of Nemoto and Tanaka [44], where this theorem
comes from, it is proved that RCA0, the axiom scheme of arithmetical comprehension
implies determinacy of (Σ0

1)2-Det∗. Moreover, taking the theorem as an axiom in the
same setting, we can prove back the scheme of arithmetical comprehension. It is from
this characteristic method that the name “reverse mathematics” comes. Inside reverse
mathematics, we say that arithmetical comprehension is the appropriate set of axioms
to prove that (Σ0

1)2 sets are determined.
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Despite this theorem, arithmetical comprehension is not sufficient to prove determinacy
results about the Baire space, even for clopen payoff sets. Looking at the proof of
theorem 1.1.6 about open or closed sets, we asked Anais to play the strategy defined by
the following fact:

“Anais can choose one of the a2n ∈ A such that the next even-length position
will still be non-losing.”

At first sight, it seems that this technique could be used in arithmetical comprehension.
Moreover, we no longer need to use Choice, since she can always find the smallest
possible natural number. However, an (even) position p, i.e. an (even-length) sequence
in the tree T , is said to be non-losing for player I if player II has no winning strategy
from then on, i.e.

∀SII (SII is a strategy for player II in G(Tp, Xp) → ∃x ∈ [Tp] ∩X).

So to define the set of the future non-losing positions, we should use an instance of
comprehension allowing us to use formulae with set quantifiers!

Remark 1.2.11. We can easily show that the set of non-losing positions in the tree has
a Π1

2 definition.

However, such a proof would not be optimal from a reverse mathematics point of view.
Indeed, we only need to use a weaker additional axiom, the one of recursive recursion, as
suggested in an exercise presented in [26, 20.2]. We will now explain the idea of transfinite
recursion in second-order arithmetic, using this sketch of proof for determinacy for closed
games as an illustration. To this end, let T be a nonempty pruned tree on N and let
X ⊆ [T ] be closed. Thus X = [S] for S a subtree of T . First, let us define a key notion
of transfinite recursion.

Definition 1.2.12 (Well orderings). For any relation Y , we denote by field(Y ) the set
of i such that (i, j) or (j, i) is in Y for some j. A reflexive relation Y ⊆ N × N is a
well-ordering and we write WO(Y ) if

1. The relation Y is anti-symmetric, transitive and total, which we write LO(Y ),

2. The relation Y is well founded, that is it has no infinite descending sequence, i.e.

¬(∃(xn)n∈N ⊆ field(Y ) ∀n (xn+1, xn) ∈ Y )

which we write WF(Y ), a Π1
1 condition.

Remark 1.2.13. Note that the proper existence of the field of Y needs at least Σ0
1-

comprehension. However, if Y is reflexive, it can be described in the simplest of ways as
the set of i such that (i, i) ∈ Y and we don’t need that anymore.
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Suppose Y is a code for a countable ordinal, that is, Y is a countable well-ordering.
Given an arithmetical formula θ(n,W ), we want to associate to each j in the field of Y
the sets:

W j = {(m, i) : i <Y j ∧m ∈ Wi} and Wj = {n : θ(n, Y j)}. (1.3)

According to our illustration, we want to consider the arithmetical formula

θ(σ,W ) = σ ∈ T \ S ∨ ∀m∃n∃i (σ⌢⟨m,n⟩, i) ∈ W,

where we should add that σ must be a even-length sequence (coded in N) and m
must be a playable move according to T . This construction is made in [48, V.8.2]
for proving open determinacy with (countable) transfinite recursion. In our case, we
would like to define this way, for each countable ordinal β, the following sequence of
sets:

σ ∈ W0 ↔ σ is an even-length sequence ∧ σ ∈ T \ S;
σ ∈ Wβ ↔ ∀m (σ⌢⟨m⟩ ∈ T → ∃n (σ⌢⟨m,n⟩) ∈

⋃
α<β

Wα).

If σ belongs to W0, the game is obviously a win for player II since we will fall out of
X = [S]. If σ belongs to Wβ, it means that whatever move player I can play, player II
can always play a move such that the following position is in Wα for α < β. Then we
can show that player II has a winning strategy in G(T,X) iff ∅ ∈ ⋃

β<ω1 Wβ. Let us thus
define the following predicate.

Definition 1.2.14. Let θ(n,W ) be any formula. We define Hθ(Y,W ) to be the formula
which says:

1. The set Y codes a linear ordering;

2. W is the set of pairs (m, j) such that j is in the field of Y and θ(n,W j) holds,
where W j is defined as in (1.3).

Note that if θ is endowed with parameters or is arithmetical, then so is Hθ(Y,W ).

It is provable in ACA0 that for any given formula θ and coded well-ordering Y , if some W
satisfies the above formula, then it is the unique set with this property.

Definition 1.2.15 (ATR0). The L2-sub-theory of Z2 of the axiom of transfinite recursion
consists of the axioms of ACA0, together with the axiom scheme:

WO(Y ) → ∃W Hθ(Y,W ),

where WO(Y ) stands for “Y codes a countable well order” and θ is arithmetical.
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The notion of well-orderings is also used to encode countable ordinals.

Definition 1.2.16 (β-models). Given any L2-theory T , a β-model M of T is an ω-model
of T such that for every Π1

1 formula ϕ(X),

∀X ∈ M, ϕ(X) ↔ M |= ϕ(X).

Note that the standard ground-model behind such a model of T contains full Z2, where
we check whether ϕ(X) is true. We can think of it as “the real world”. While the
idea behind an ω-model is to have the standard natural numbers, a β-model has thus
standard natural numbers and ordinals. Indeed, we have seen in definition 1.2.12 that
being a code for an ordinal is a Π1

1 condition.

In the same way that any ω-model satisfies induction for all formulae of L2, it can be
shown that any β-model satisfies transfinite induction for all formulae of L2 and that
this imply furthermore that it satisfies ATR0.

The following theorem states that open determinacy for games in ω is equivalent, in
the sense of reverse mathematics, to the axiom of transfinite recursion. Hence, ATR0
is the right set of axioms to prove it. This is done in [48] and [49], but we essen-
tially already presented how to lead the proof, in our illustration of transfinite recur-
sion.

Theorem 1.2.17 (ACA0). ATR0 ↔ Σ0
1-Det.

One direct application of Σ0
1 determinacy is the ability to prove some form of the axiom

of choice in second-order arithmetic.

Definition 1.2.18 (Axiom of choice scheme). For any 0 ≤ k < ω, the scheme of Σ1
k

choice is

∀n ∃Y η(n, Y ) → ∃Z ∀n η(n, (Z)n),

where η(n, Y ) is any Σ1
k formula in which Z does not occur. We are using the notation

(Z)n = {i : (i, n) ∈ Z}.

We write it Σ1
k-AC0.

For example, the scheme of Σ1
1 choice asserts the validity of the use of Choice for

countable collections of nonempty analytic sets of real numbers in second-order arith-
metic. Here Z would code the choice function. We now state the application of Σ0

1
determinacy.

Theorem 1.2.19. ATR0 ⊢ Σ1
1 axiom of choice.
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Before tackling the proof itself, we need some classical tools to handle the Σ1
1-formulae.

Lemma 1.2.20 (ACA0). Let ϕ(X) be a Σ1
1-formula. Then we can find an arithmetical

(in fact Σ0
0) formula θ(σ, τ) such that

∀X, (ϕ(X) ↔ ∃f ∀m, θ(X[m], f [m])).

Here f ranges over total functions N → N, i.e. their domain is all the natural numbers.
Also

X[m] = ⟨ξ0, ξ1, . . . , ξm−1⟩

where ξi = 1 if i ∈ X and 0 otherwise. Note that ϕ(X) may contain free variables other
than X. If so, then θ(σ, τ) contain them too.

We refer to [48] for proof of this classical result. It is known as Kleene normal form
theorem for Σ1

1 relations.

Lemma 1.2.21. For any Σ1
1-formula ϕ(n,X), there exists a sequence of trees (Tk)k∈N

subsets of (2 × ω)<ω such that

∀n ∀X, (ϕ(n,X) ↔ ∃f ∀k, ⟨(X(0), f(0)), . . . , (X(k − 1), f(k − 1))⟩ ∈ Tn),

where of course we identify X with its characteristic function.

Proof. Using the preceding lemma for a given n, we construct Tn ⊆ (2 × ω)<ω as

σ ∈ Tn ↔ ∃f ∃m, θ(σ[m]).

We thus get a sequence of trees with the desired property.

Proof of the theorem 1.2.19. By the preceding lemma, it is sufficient to prove the fol-
lowing. For any sequence of trees (Tk)k∈N such that

∀k ∃gk gk is a branch through Tk → ∃(gk)k∈N ∀k gk is a branch through Tk.

We shall obtain this as a consequence of Σ0
1 determinacy.

Consider the following open (Σ0
1) game. Both players are playing natural numbers. Let

k be the first move of player I and g the moves of player II all along a play. The payoff
set X contains all the sequences such that g is not a branch through Tk. This set is
open since if a sequence is not a branch through a tree, then it has a finite problematic
initial segment such that all the sequences in the bouquet of this node are still not
branches through the tree. So every point in X is contained in an open neighbourhood
in X. Because of our hypothesis, player I cannot have a winning strategy. Invoking
open determinacy, we conclude the proof.
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Another theorem for which ATR0 is the appropriate set of axioms is Suslin’s theorem
(theorem 1.1.12) which is stated as follows.

Theorem 1.2.22 (ATR0). If A1 and A0 are codes for analytic sets (of the Cantor space
2N) such that ∀X (X ∈ A1 ↔ X ̸∈ A0), then there exists a code for a Borel set B (of
the Cantor space) such that ∀X (X ∈ A1 ↔ X ∈ B). Conversely, given any code for a
Borel set B there exist analytic codes A1 and A0 with these properties.

Note that “X ∈ A1” and “X ∈ B” are some Σ1
1 formulae, the latter stating the ex-

istence of a so-called “evaluation map” verifying an arithmetical condition (which is
consistent with our analogy between the hierarchies of formulae of logic and definable
sets of descriptive set theory).

For the sake of completeness let us state a last theory of L2 of intermediate strength
between RCA0 and ACA0.

Definition 1.2.23 (WKL0). The L2-theory of WKL0 consists of the axiom of RCA0 plus
the weak König’s lemma, that is the statement

∀T ⊆ 2N T infinite → ∃f f is a branch through T.

This lemma is sufficient and necessary to prove that every continuous real-valued func-
tion defined on a compact interval f : [a, b] → R is Riemann-integrable. Note that we
characterise a compact (complete metric) space by providing for each j < ω, a finite col-
lection of centers for open balls of radius 2−j covering the space. It is also equivalent to
several basic theorems of mathematical logic such as Gödel’s completeness (its standard
form) and compactness theorem.

The formal subsystems of second-order arithmetic RCA0, WKL0, ACA0, ATR0 and Π1
1-CA0

are called the big five. Most of the reverse mathematics results for theorems of ordinary
mathematics can indeed be successfully implemented inside one of these subsystems. In
addition to that, they turn out to correspond to several philosophical programmes in
the foundation of mathematics. Again, we invite the interested reader to consult the
book of Simpson [48] for further development around reverse mathematics. Along the
way, we also reference the introductory book of Stillwell [50] on the subject “Reverse
Mathematics: Proofs from the inside out”, as well as the more advanced article of
Shore [47], “Reverse Mathematics: The Playground of Logic”, which treats of various
subsystems of second-order arithmetic lying outside of the big fives, as well as the relation
of reverse mathematics with other fields of logic such as computability theory, with an
eye on our subject: determinacy of infinite games.

34



1.3 A set-theoretic interpretation of ATR0

Despite the reverse mathematics exposition of the last chapter being expressed in the
language of L2, we could wonder if this two-sorted language is necessary to inspect and
classify theorems according to their logical strength and find the appropriate axioms to
prove them. Even if second-order arithmetic seems to be particularly well suited to such
a meticulous analysis, precisely because it takes into account the difference between two
kinds of objects, the question remains whether or not the big five are interpretable as
some sub-theory of ZFC.

The possibility of a back-and-forth between the two theories would be very fruitful in
terms of results for both sides. Moreover, the coding of objects in second-order arithmetic
is often quite tedious. When the axioms we use are strong enough like in some of the
proofs of the preceding section, our proofs are indeed closer to those of set theory and
hence often more readable.

Taking the example of ATR0, we will see that such a translation is possible! Because of
the unbounded capacity of ZFC to create new sets, way bigger than the countable ones,
we need to find way weaker, and eventually restrictive axioms for our set interpretation.
Therefore we first set up a weaker base theory in LSet, nevertheless suitable for the
construction of a reasonable part of classical set theory. All the content of the present
section is mostly developed in [48, VII.3]. The very crucial tools presented here, suitable
trees coding sets, were introduced by Jäger and Simpson. Similar results can also be
found in [2].

Definition 1.3.1 (BSet). The LSet-theory BSet (Base set theory) is axiomatized by the
axioms
Equality: The relation = is reflexive, symmetric, transitive, and ∈ is well

defined under this equivalence relation,

Extensionality: If u and v have the same elements, then u = v,

Pair: The pair of u and v, {u, v}, is a set,

Union: The union ⋃
u is a set,

Infinity: There exists an inductive set,

∆0 separation: The collection {x ∈ u : ϕ(x)}, of the sets in u satisfying ϕ is a
set for ϕ, a ∆0 formula,

where ∆0 formulae are the one-sorted analogous of ∆0
0 formulae, with quantifiers bounded

by the use of “∈”.
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Notice that here we want to use “=” as a symbol of the language LSet because the equality
is not defined between sets in second-order arithmetic, so if we want to interpret back
a given set theory in second-order arithmetic, we have to show that Equality is true.
Abusing of notations, however write LSet instead of LSet ∪ {=} for the language {∈,=}
during this section.

As it is shown in [48, VII.3], we can indeed implement a reasonable part of the set-
theoretic notions inside BSet, like (countable) ordinals. We can therefore set up the
following set-theoretic interpretation of second-order arithmetical, expressed in terms of
models.

Definition 1.3.2 (Interpretation of L2 from LSet). To any model A = (|A|,∈A) of BSet
we can canonically associate an L2 structure

A2 = M = (|M |,SM ,+M , ·M , 0M , 1M , <M).

Namely

|M | = ωA = {a ∈ |A| | A |= a is a finite ordinal},
SM = {bA : A |= b ⊆ ωA ∧ b ∈ |A|} where bA = {a ∈ |A| | A |= a ∈ b},

and +M , ·M , 0M , 1M , <M are defined the standard way.

Of course, A2 does not preserve, in general, all the information of A since the latter
may contain uncountable sets. However, we can extract good properties for A2 from A.

Lemma 1.3.3. If A is a model of BSet, A2 is a model of ACA0.

Proof. The basic axioms are easily verifiable. Let us prove the scheme of arithmetical
comprehension. Let ϕ(n) be an arithmetical formula. We can naturally translate this L2
formula into one of LSet, ϕ

′(u). To do this, the symbols +, ·, 0, 1, =, ∈ are interpreted
following their standard construction in set theory. The number variables are interpreted
as ranging over elements of ω, making of ϕ′(u) a ∆0 formula. Then

A |= ∃u u = {n ∈ ω | ϕ′(u)},

by ∆0 separation. Thus, it follows from the definition that

A2 |= n ∈ bA ↔ ϕ(n).
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Thus, the induction scheme follows from arithmetical comprehension together with the
set induction

∀X(⊆ ω) [(0 ∈ X ∧ ∀n (n ∈ X → n+ 1 ∈ X)) → ∀n (n ∈ X)],

that we can deduce from ω being defined as well-founded in BSet (see [48, VII.3]).

To go the converse way we need the following concept.

Definition 1.3.4 (Suitable tree). We define a suitable tree by a well-founded non-empty
tree T ⊆ NN, i.e. T has no path, i.e.

¬(∃f ∈ NN ∀m f [m] ∈ T ).

Notice that this is a Π1
1 condition.

These trees are deemed to encode sets by keeping track of the relation “a ∈ b” with
the relation “a is a child of b”. To better understand the meaning of the equality and
the membership relation between sets coded by suitable trees we introduce the following
tools.

Definition 1.3.5 (Regular relation and collapsing function). A relation r is said to be
regular if

∀u (u ̸= ∅ =⇒ ∃x ∈ u ∀y ∈ u ((y, x) ̸∈ r)).

A collapsing function for a relation r is a function whose domain is the field of r with
the property

∀x ∈ field(r) (f(x) = f({y : (y, x) ∈ r})).

We already know the following regular relation.

Definition 1.3.6 (Kleene/Brouwer ordering). Given a tree T ⊆ NN, we define the
Kleene/Brouwer linear ordering KB(T ) ⊆ T × T as the set of couples (σ, τ) such that
σ ⊇ τ if the sequences are compatible,

∃j < min(|σ|, |τ |) [σ(j) < τ(j) ∧ ∀i < j(σ(i) = τ(i))] otherwise.

If T = N<N, then we get a dense linear ordering with no right point and with the empty
sequence as a left point.
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Figure 1.6: Interpretation of suitable trees.

Inside set theory (where we can state a definition similar to 1.3.4), if we have such a
collapsing function of the Kleene/Brouwer ordering of a suitable tree. The range of this
function will be the standard interpretation of the set that the tree is deemed to code.
Given two suitable trees S and T given collapsing function for them cS and cT (provided
that they exist), we then want to say to S =∗ T iff cS(S) = cT (T ) and S ∈∗ T iff
cS(S) ∈ cT (T ).

Figure 1.6 is an example of suitable tree coding the set “c = {{∅}, {∅, {∅}}}”, translated
by the use of its collapsing function, f . Figure 1.7 is an illustration of an equivalent tree
under =∗ and of the relation ∈∗, showing that {∅, {∅}} = b ∈ c. We can interpret =∗ as
the equivalence relation induced by the collapsing function. As for the relation ∈∗, we
must notice that any subtree T⟨n⟩, which is again a suitable tree is coding the elements
coded by T .

It turns out that we can define such an equivalence relation on trees in second-order
arithmetic. We define S ⊕ T to be the suitable tree consisting of ⟨⟩ plus all ⟨0⟩⌢σ
and ⟨1⟩⌢τ for σ ∈ S and τ ∈ T . This equivalence relation in set theory was defined
as

X = {(σ, τ) : σ, τ ∈ S ⊕ T ∧ cS⊕T (σ) = cS⊕T (τ)}.

We can also describe the desired conditions ofX inside L2. We resume them by

Iso(X,S ⊕ T ).

We refer the reader to [48, VII.3] for the detailed (arithmetical) conditions, rather tech-
nical and not necessary for the present study.

Definition 1.3.7 (=∗ and ∈∗ in L2). Given S and T suitable trees, we define the Σ1
1

conditions

S =∗ T ↔ ∃X Iso(X,S ⊕ T ) ∧ ((⟨0⟩, ⟨1⟩) ∈ X)
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Figure 1.7: Illustration of relations between suitable trees.

and

S ∈∗ T ↔ ∃X Iso(X,S ⊕ T ) ∧ ∃n ((⟨0⟩, ⟨1, n⟩) ∈ X).

In ATR0, we can show that such equivalence relations always exist and are unique for
suitable trees.

Definition 1.3.8 (Interpretation of LSet from L2). To any L2-structure

M = (|M |,SM ,+M , ·M , 0M , 1M , <M)

we associate an LSet-structure as follows. Put

TM = {T ∈ SM | M |= T is a suitable tree},

for T ∈ TM put

[T ] = {T ′ ∈ TM | M |= T =∗ T ′}

and define

|A| = {[T ] : T ∈ TM}.
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For T1, T2 ∈ TM define [T1] ∈A [T2] iff M |= T1 ∈∗ T2. Thus we define

MSet = A = (|A|,∈A).

To ensure the construction to well behave, we usually work inside a model of ATR0.
Similarly to the preceding proposition, we can get basic properties for MSet inside weaker
settings. To do this, we also need a translation of formulae, this time from LSet to
L2.

Definition 1.3.9. Translation of formulae from LSet to L2 Given an LSet formula ϕ,
we define an L2 formula |ϕ| in the following way, with Vi, i < ω are intended to denote
suitable trees and are linked to the set-theoretic variables vi of ϕ:

1. |vi = vj| is Vi =∗ Vj;

2. |vi ∈ vj| is Vi ∈∗ Vj;

3. |¬ϕ| is ¬|ϕ|; |ϕ ∧ ψ| is |ϕ| ∧ |ψ|;

4. |∀vi ϕ| is ∀Vi (Vi suitable tree → |ϕ|);

5. |∃vi ϕ| is ∃Vi (Vi suitable tree ∧ |ϕ|).

Then, vi if free in ϕ iff Vi is free in |ϕ|.

Such results can be found in [2] for instance. Sometimes, it is also useful to consider
an alternative definition of ∆0 separation, given by the following folklore result, the
proof of which can be found in [23, Chapt. 13].

Theorem 1.3.10 (ZF). There exists operations G1, . . . , G10 such that if ϕ(u1, . . . , un)
is a ∆0 formula of LSet, then there is a composition of G1, . . . , G10 such that for all
v1, . . . , vn,

G(v1, . . . , vn) = {(u1, . . . , un) : u1 ∈ v1, . . . , un ∈ vn and ϕ(u1, . . . un)}.

Lemma 1.3.11. ACA0 proves |infinity|.

Proof. Given two natural numbers n and m of M we define

nEm ↔ n = mi where
m = 2m1 + 2m2 + · · · + 2mj , m1 > m2 > · · · > mj.

We define V 0 as the suitable tree consisting of ⟨⟩ plus all ⟨n0, . . . nk⟩ such that ni+1Eni
for all i < k. We claim that MSet |= [V 0](=: v0) is inductive. Let v1 and v2 be sets in
v0 and countable trees V1 and V2 representing them. WLOG we can consider V1 = V 0

⟨n⟩
and V2 = V 0

⟨m⟩ for some natural numbers n,m. Then v1 ∪ {v2} is represented by the tree
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V3 consisting of ⟨⟩ plus all the finite sequences σ ∈ V1 and m⌢τ with τ ∈ V2. Suppose
m does not appear in the binary expansion of n then

V3 =∗ V 0
⟨n+2m⟩ → V3 ∈∗ V 0.

Otherwise it means that V2 ∈∗ V1 and so V3 =∗ V1 which by hypothesis satisfies V 1 ∈∗ V 0.
Thus, we have proved that MSet |= v1 ∪ {v2} ∈ [V 0].

Nevertheless, since we don’t have the scheme of transfinite recursion, some suitable trees
in M may not have such an equivalence relation and then we could lose some information
present in M by only considering its set-theoretic counterpart.

In order to get better mutual interpretability results, we need to improve the strength of
the respective theories. We will now define the set-theoretic equivalent of ATR0.

Definition 1.3.12 (ATRSet
0 ). The LSet-theory axiomatized by the axioms of BSet plus

Regularity If u is nonempty, then it has an ∈-minimal element,

Countability There exists a transitive and countable set v such that u ⊆ v,

Beta If r is a regular relation, its collapsing function is a set,

is called ATRSet
0 .

Not only this theory gives good properties to the representation of sets by suitable
trees by giving a concrete interpretation to =∗ and ∈∗ thanks to the existence of
the collapsing function, but it also implies that any set can be coded as a suitable
tree.

Proposition 1.3.13 (ATRSet
0 ). Given a set u, there exists a suitable tree T such that,

given its collapsing function cT ,

cT (⟨ ⟩) = cT ({⟨n⟩ : ⟨n⟩ ∈ T}) = u.

Proof. By Countability, consider the countable transitive set v containing u and its
injection i : v → ω. We define T ⊆ NN, containing ⟨⟩ and all sequences ⟨i(v0), . . . , i(vk)⟩
such that v0 ∈ u and vi+1 ∈ vi for all i < k. By Regularity, T is suitable and by
Beta it has a collapsing function cT , moreover, we can suppose the lemma is true for
the elements of u since otherwise it would contradict Regularity. This way, denoting
by Tv0 the suitable tree representing v0 ∈ u,

cT (⟨ ⟩) = cT ({⟨n⟩ : ⟨n⟩ ∈ T})
= {cTv0

(Tv0) : v0 ∈ u} = u.
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It turns out that both theories ATR0 and ATRSet
0 are equivalent in terms of provability,

which is exposed in the following result of [48, VII.3].

Definition 1.3.14. Let T0 be any theory in the language L2 containing ATR0 (each
axiom of ATR0 is a theorem of T0). We define

T Set
0 = ATRSet

0 + T0,

i.e. T Set
0 is that theory in the language LSet whose axioms are those of ATRSet

0 plus the
natural translation into LSet of those of T0.

Theorem 1.3.15. Let T0 be any theory in the language L2 containing ATR0. Let M be
a model of T0 and A a model of T Set

0 , then

1. MSet is a model of T Set
0 and A2 a model of T0;

2. (MSet)2 = M and (A2)Set = A, up to canonical isomorphisms.

Moreover, the hierarchies of logical complexity for formulae are well preserved under this
translation.

Theorem 1.3.16 (ATRSet
0 ). Assume 0 ≤ k < ω.

1. If ϕ is a Σk formula of LSet, then |ϕ| is equivalent to a Σ1
k+1 formula of L2.

2. If ϕ is a Σ1
k+2 formula of L2, then it is equivalent to a Σk+1 formula of LSet.

Finally, we point out the fact that there is a correspondence between the β-models of
ATR0 and transitive models of ATRSet

0 . A model A = (|A|,∈A) of set theory is said to
be transitive if |A| is a transitive set, i.e.

∀x, y x ∈ |A| et y ∈ x → y ∈ |A|,

and ∈A=∈↾ |A|.

First, since being a suitable tree is a Π1
1 condition, the suitable trees of a β-model are

the ones in the ground model so a subtree of a suitable tree is still suitable and its
set-theoretic translation is transitive.

Second, by the usual Kleene normal form argument, suppose that the translation of
a transitive model is not a β-model. This means that some relation becomes regular
in the model because the infinite descending sequence is no more an element of the
model. By Beta, we could consider the standard representation α of this relation. By
transitivity, following an infinite descending sequence in the ground model gives us a
standard representation for it

α ∋ α1 ∋ α2 ∋ · · · ∋ αn ∋ · · ·

a contradiction to Regularity.
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Chapter 2

Set Theory Tools and their
Consequences on Subsystems of
Second Order Arithmetic

2.1 The Constructible Universe

Back in the context of ZFC, we introduced the interest of studying AD and local ver-
sions of determinacy (i.e. for payoff set of a given complexity), by the fact that, despite
ZFC being very powerful, lots of mathematical questions remain unsolved. Actually, it
is a consequence of Gödel’s incompleteness theorem that in every recursively enumer-
able theory able to prove a sufficient collection of theorems about arithmetic, there are
statements that can neither be proved nor disproved. In particular, there are sentences
ϕ of LSet and models M1 and M2 of ZFC such that ϕ is true in M1 but false in M2.
An example of such a sentence is the continuum hypothesis, which claims that there is
no intermediate cardinality between the cardinality of the natural numbers N and the
real numbers R. In other words, assuming choice, |R| = ℵ1. Constructible sets were
introduced by Gödel to prove the consistency of the axiom of choice and the continuum
hypothesis (even the generalized one).

Let (M, . . . ) be a structure for some language and A ⊆ M a set of parameters. We
say that a set X ⊆ M is A-definable if there is a formula ϕ of the language and some
a1, . . . , an ∈ A such that

X = {x ∈ M | (M, . . . ) |= ϕ(x, a1, . . . , an)}.

We also say that ϕ defines X. Note that in the context of second-order arithmetic, we
coded uncountable definable sets by ϕ. Moreover, let

def[A] = {X ⊆ A | X is A-definable over (M, . . . )}.

Definition 2.1.1 (Constructible universe). The constructible hierarchy is defined by
transfinite induction
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1. L0 = ∅, Lα+1 = def[Lα],

2. Lγ = ⋃
β<γ Lβ if γ is a limit ordinal, and

3. L = ⋃
α∈Ord Lα,

where Ord denotes the class of all the ordinal numbers.

Furthermore, L is the smallest class which is a transitive model of ZF and contains Ord.
We call constructibility the axiom whereby every set of the universe is constructible,
i.e.

∀x x ∈ L

and we often abbreviate it by “V = L” (where V is deemed to denote the universe).
We can also take any transitive set X as L0 and we then write L(X) for the class of
sets construction from X. It is worth noticing that L(X) can be defined in ATRSet

0 for
any X ⊆ ω by coding the defining formulae by natural numbers, which process is called
“Gödel numbering”. This way, in second-order arithmetic (beginning from ATR0) we can
also state constructibility as

∃X ∀Y (Y ∈ L(X)).

Among others, further developments about constructible sets can be found in the books
of Barwise, Devlin, Jech, Jensen, Martin and Simpson [3, 10, 23, 24, 35, 48] as well as
in the book of Devlin adapted for undergraduates, “The Joy of Sets” [11] which is
also a very good introduction to general set theory. From there, we can extract the
following folklore results, for which we introduce the next preliminary notion about
cardinal numbers.

Definition 2.1.2 (Regular cardinal). Let α be an ordinal number. A set A ⊆ α is
cofinal in α if for each β < α there is a γ in A such that β ≤ γ. In other words, we can
build an unbounded map f : A → α.

The cofinality of α, cf(α), is the least cardinal size of a cofinal subset in α.

A cardinal α is said to be regular if cf(α) = α, otherwise we say that α is singular.

Theorem 2.1.3 (ZF). For every infinite ordinal α,

1. |Lα| = |α|;

2. Lα is a model of choice;

3. Lα is a model of BSet iff α is a limit ordinal, except when α = ω, where only
infinity doesn’t hold in Lω;

4. If ℵ0 < α is a regular cardinal, then Lα is a model of ZF−;
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Proof. Firstly, observe that α ∈ Lα+1 hence |α| ≤ |Lα| for all α. When α = n is finite,
we also have Ln+1 = P(Ln), showing that Ln+1 is finite and |Lω| = ℵ0. We now prove
that |Lα| ≤ |α| by transfinite induction. If α + 1 is a successor ordinal, since there are
countably many definable sets from Lα,

|Lα+1| ≤ max(|α|,ℵ0) = |α| = |α + 1|.

If β is a limit ordinal,

|Lβ| = |
⋃
α<β

Lα| =
∑
α<β

|α| ≤
∑
α<β

|β| ≤ |β| · |β| = β.

For the second point, we prove choice by exhibiting the definition of a well ordering of
Lα, <Lα , definable on Lα. We define <Lα by transfinite induction, the limit case being
obvious as we define <Lα+1 as an extension of <Lα . Thus we have three cases to compare
x ̸= y ∈ Lα:

1. If x, y ∈ Lβ for some β < α, x <Lα y exactly when x <Lβ
y;

2. If only x satisfy the preceding condition then x <Lα y and respectively when only
y does;

3. If x, y are newly defined elements of Lα we order them according to a fixed well-
ordering of their respective defining formulae.

The next point is straightforward to check.

Finally, take α, a regular cardinal. The only non-obvious point is to prove separation,
replacement by following a similar argument. We will crucially use the following
reflection principle. Given δ < α and a formula ∃xϕ(x) with parameters in Lδ, we have

Lα |= ∃xϕ(x) → ∃δ < γ < α Lγ |= ∃xϕ(x).

Using regularity, we now show that there is a β < α such that Lβ satisfies the same
formulae as Lα, we will call it, an elementary submodel of Lα. Since there are countably
many formulae of the form presented above consider B, the set of the γ reflecting such
formulae. Since B is countable but α is regular, sup(B) = β0 < α. We then reiterate
the process to form a sequence δ < β0 < β1 < · · · < βn < · · · < α. Taking then
β = supn<ω βn, which is again by regularity strictly less than α, Lβ is what we call the
Skolem Hull of Lδ and is the desired elementary submodel of Lα (by applying Tarski-
Vaught test for elementary submodels).

Now we prove separation. Let ϕ(x) with a formula with parameters in Lα and a ∈ Lα.
We have to show that

Sϕa = {x ∈ a | ϕ(x)} ∈ Lα.
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Let δ < α such that Lδ contains a and all the parameters of ϕ. Then Lβ the Skolem hull
of Lδ such that each

Lα |= ∃xϕ(x) ↔ Lδ |= ∃xϕ(x),

with δ < α. Then it is clear that Sϕa ∈ Lδ+1 ⊂ Lα, concluding our proof.

We can improve the idea of the last result, to a kind of a local version, but first, let us
set up the foundational notions we just used.

Definition 2.1.4 (Elementary embeddings). Let M = (M,∈M) and N = (N,∈N) be
structures of LSet and j : M → N be an embedding. We say that j is a Σk elementary
embedding if

M |= ϕ(a1, . . . , an) ↔ N |= ϕ(j(a1), . . . , j(an)),

for all Σk formula of LSet and a1, . . . , an ∈ M . We say that j is elementary of the
preceding holds for any formula of LSet and write M ∼= N if j is an elementary bijective
embedding.

When j is the inclusion map, we write M ⪯k N to say that M is an Σk elementary
substructure of N or that N is a Σk elementary extension of M.

A useful characterisation of the elementary submodel is the Tarski-Vaught criterion that
we already used in the proof of theorem 2.1.3. For its proof, we refer to any introduction
on model theory, like [33].

Theorem 2.1.5 (Tarski-Vaught criterion). Suppose that Mis a substructure of N .
Then, Mis an elementary substructure if and only if, for any formula ϕ(x) with pa-
rameters in M

N |= ∃xϕ(x) ↔ M |= ∃xϕ(x).

Another central result is the condensation lemma. We omit its proof which can be found
in any good book about constructibility like [10].

Theorem 2.1.6 (Condensation lemma). Let α be a limit ordinal. If

X ≺1 Lα,

then there are unique π and β such that β ≤ α and:

1. π : (X,∈) ∼= (Lβ,∈);

2. if Y ⊆ X is transitive, then π|Y = id|Y ;
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3. π(x) ≤Lα x for all x ∈ X,

with ≤Lα defined as in the proof of point 3 of theorem 2.1.3.

We often call π, the Mostowski collapsing function. For the following important charac-
terisation of comprehension in constructible universes, we need some central results
that have some flavour of Gödel’s second incompleteness theorem, but in a more syn-
tactical way. The proof we present is a straightforward generalisation of the sketch of
the proof exposed in [23] about this theorem of Tarski.

Theorem 2.1.7 (Tarski’s undefinability of truth). Let L be a language containing LSet
of cardinality α and ♯σ be a Gödel numbering of the sentences L over |ω ·α|. Then there
is no truth definition. That is, there is no predicate T (x) such that

1. ∀x (T (x) → x ∈ |ω · α|);

2. If σ is a L-sentence, then σ ↔ T (♯σ).

Proof. Let us assume that a definition of truth T (x) exists. Let

ϕ0, ϕ1, . . . ϕβ, . . .

be an enumeration of all L formulae with one free variable. Let ψ(x) be the formula

x ∈ |ω · α| ∧ ¬T (♯(ϕx(x))).

There is an ordinal number γ < |ω · α| such that ψ is ϕγ. Let σ be the sentence ψ(γ).
Then we have

σ ↔ ψ(γ) ↔ ¬T (♯(ϕγ(γ))) ↔ ¬T (♯σ),

a contradiction.

Theorem 2.1.8. Let α be an ordinal and n, a natural number, the following conditions
are equivalent:

1. Lα |= Σn separation;

2. ∀β < α ∃γ (β < γ < α ∧ Lγ ⪯n Lα).

In particular, if they hold, then Lα |= Σn replacement.

Proof. We first prove that 1 implies 2. Let ω < β < α. Define recursively

H1 = Σn(Lβ) = {x ∈ Lα | ∃ϕ ∈ Σn ∃y ∈ Lβ (Lα |= ϕ(x, y) ∧ ∀y <L x Lα ̸|= ϕ(x, y))},
H2 = Σn(X1), . . . , Hk+1 = Σn(Hk), . . . ;

H =
⋃
k<ω

Hk.
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We claim that H is transitive. Indeed, since there are countably many formulae, for all
k there is a counting jk : β 7→ y for each y ∈ Hk, which belong to Hk+1. Then the value
of this counting for any δ < β is also in Hk+1 and so does every element of y, proving
our claim.

We now show by induction that H ⪯n Lα. Suppose H ⪯i Lα for i < n, we want to show
H ⪯i+1 Lα. Let ϕ be a Πi formula with parameters from Hk, for some k < ω such that
Lα |= ∃xϕ(x) (we use Tarski-Vaught test for elementary embeddings). Then there exists
an x ∈ Hk+1 such that H ⪯i Lα |= ϕ(x), proving our claim. Thus, by theorem 2.1.6,
H = Lδ for some δ ≤ α.

Finally, we show that δ < α. Indeed consider the following set coding H,

C = {(ϕ, p̄ϕ, ψ, p̄ψ) | p̄ϕ, p̄ψ ∈ Lβ ∪H ∧ ∃!x ψ(x, p̄ϕ) ∧ ∃!y ψ(y, p̄ψ)
∧ ∀x, y ((ϕ(x, p̄ϕ) ∧ ψ(y, p̄ψ)) → x ∈ y)},

where any p ∈ H is coded by its definition along the construction of the Hk’s, a finite
sequence of formulae, which are all Πn−1. Notice that in virtue of Σn separation, we
have C ∈ Lα and we can embed C in β<ω and thus in β. Then, supposing H = Lα, we
have a truth definition in the language LSet ∪ β for the structure Lα, a contradiction to
theorem 2.1.7, concluding the proof.

The proof that 2 implies 1 and that Lα |= Σn replacement is the same idea as the
one developed in the proof of point 4 of theorem 2.1.3.

2.2 Admissible Sets

During our meticulous analysis of the complexity required to prove determinacy on the
edge of second-order arithmetic in the next chapter, we will need a more flexible and
sensitive hierarchy of set theories, weaker than ZFC. Let us begin with the axioms of
admissible sets, whose theory is extensively developed in [3].

Definition 2.2.1 (KP). The Kripke-Platek LSet-theory, KP, is axiomatized by the basic
axioms

Emptyset: ∃x ∀y y ̸∈ x,
Extensionality,

Pair,
Union,

which we already defined in the preceding chapter (see definition 1.0.1). We also have
an adapted version of the regularity axiom, the scheme of foundation:

∃x ϕ(x) → ∃x (ϕ(x) ∧ ∀y ∈ x ¬ϕ(y)),
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plus the schemes of ∆0 Separation (see definition 1.3.1) and ∆0 Collection, the
latter being

∀x ∈ u ∃y ϕ(x, y) → ∃v ∀x ∈ u ∃y ∈ v ϕ(x, y),

for all ∆0 formulae in which v does not occur free.

Notice that since we don’t require infinity to hold, we add an “empty set axiom”
asserting the existence of at least one element (for the sake of definiteness, the existence
of the set with no elements). Instead, we could suppose that any structure, that is any
interpretation of a formal language, is non-empty.

Definition 2.2.2 (Admissible set). An admissible set is a model of KP

(A,∈A),

where ∈A is the restriction to A of the membership relation ∈ and A is a transitive set.

It can be proved that any admissible set actually satisfies Σ1 collection and ∆1
separation. We also notice the difference between replacement and collection.
Using the two last consequence of KP, it can be showed that Σ1 replacement is also a
theorem of KP.

Remark 2.2.3. There are common extensions of ATRSet
0 and KP. Notably, beta is

not provable in KP without Σ1 separation and it follows from the translation of the-
orem 1.3.16 that |Σ1 collection| would imply Σ1

2-AC0 (see definition 1.2.18), which
seems to be the weakest formal system to prove |KP| (here |T | for an LSet-theory con-
taining ATRSet

0 , except possibly the axiom of countability, denotes the translation of this
theory in second-order arithmetic, after possibly adding the axiom of countability). More
naturally, it can be shown that Σ1

2-AC0 is equivalent to ∆1
2-CA0 (see definition 2.3.2), so

that,

|KP + infinity + beta| ≈ |ATRSet
0 + ∆1 separation|.

The later analysis is based on [48, VII.3]. In the frame of our study, this is to be put in
relationship with the respective results of Steel that Σ0

1-Det is equivalent to ATR0 over
ACA0 and to the existence of a well-founded model of KP + infinity.

Admissible sets naturally arise in the constructible hierarchy we introduced in the last
section. In particular, there are infinitely many ordinals α < ω1 with Lα being ad-
missible. This can be shown by using Downward Lowenheim-Skolem on any substruc-
ture Lβ+1 ⊊ Lω1 to get a countable model of KP, M and then use the Mostowski
collapsing function to get a countable initial segment of the constructible hierarchy
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(Lα,∈) ∼= (M,∈), with Lβ ∈ Lα. Moreover Lα is the smallest model of KP with the
class of ordinals of order type α.

We then have a generalized notion of admissible sets which gives us a convenient hier-
archy of set theories.

Definition 2.2.4 (n-admissibility). For any 1 ≤ n < ω we say that a set A is n-
admissible if

1. A is admissible,

2. (A,∈A) is a model of Σn−1 Separation and ∆n−1 Collection.

We say that an ordinal α is n-admissible if Lα is n-admissible.

Let us present some equivalent characterisations of n-admissibility in the constructible
universe, essentially similar to the ideas we developed in theorem 2.1.8. Together with
the results of section 1.3, they are essential preliminaries for the theorems presented
in [38] about determinacy that we will treat in the next chapter.

Proposition 2.2.5. Let α be an ordinal, the following assertions on Lα are equivalent:

1. It is n-admissible;

2. It satisfies Σn bounding:

∀δ < α (Lα |= ∀γ < δ ∃y ϕ(γ, y)) → ∃λ < α Lα |= (∀γ < δ ∃y ∈ Lλ ϕ(γ, y)),

where ϕ is Πn−1 with parameters from Lα;

3. For any function f with domain some δ < α which is Σn (equivalently Πn−1) over
Lα, f [γ] ∈ Lα for every γ < α.

Thus we have the classical bounded quantifier elimination rule: For any Πn−1 formula
ϕ, “∀x ∈ t ∃y ϕ” is equivalent to a Σn formula.

Let us now develop some folklore machinery useful when working inside our present
setup.

First, we say that a structure of the language of set theory M has Σn Skolem functions
if there is a function h of the structure which associates a witness to all Πn−1 formula
ψ such that M |= ∃xψ(x). In other words, a Σn Skolem function of M is a partial
function h : ω ×M → M , h ∈ M such that for all set A that is Σn definable with some
parameters p̄, there is an i such that h(i, p̄) ∈ A.

Lemma 2.2.6. If α is n-admissible, then Lα has a parameterless Σn+1 Skolem function.

50



Proof. Consider a Πn formula ψ(x, p̄) with Gödel number i. We define

h(i, p̄) = x ↔ ψ(x, p̄) ∧ ∀(x′ <Lα x) ¬ψ(x, p̄).

The first conjunct is thus Πn while the second is Σn by proposition 2.2.5.

Lemma 2.2.7. If Lα is n-admissible, then it satisfies ∆n separation, that is, for
any u ∈ Lα and Σn formulae ϕ(z) and ψ(z) such that Lα |= ∀z (ϕ(z) ↔ ¬ψ(z)),
{z ∈ u | ϕ(z)} ∈ Lα.

Proof. When n = 1, it is a standard fact, as discussed earlier. We now prove our claim
by induction for n ≥ 2. Let ϕ(x, y, z) and ψ(x, y, z) be two Σn−2 formulae such that

Lα |= ∀z(∃x ∀y ϕ(x, y, z) ↔ ¬∃x ∀y ψ(x, y, z))

and u ∈ Lα. We define on Lα a function with domain u,

f(z) = x ↔ [∀y ϕ(x, y, z) ∧ ∀(x′ <Lα x) ∃y′ ¬ϕ(x, y′, z)]
∨ [∀y ψ(x, y, z) ∧ ∀(x′ <Lα x) ∃y′ ¬ψ(x, y′, z)].

By proposition 2.2.5, the definition of f is equivalent to a ∆n formula and thus its range
is bounded, say, by Lγ. It means that we can find in Lγ enough elements to witness the
truth of our defining formula for each z ∈ u. Consequently,

{z ∈ u | Lα |= ∃x ∀y ϕ(x, y, z)} = {z ∈ u | Lα |= ∃(x ∈ Lγ) ∀y ϕ(x, y, z)}
= {z ∈ u | Lα |= ∀(x ∈ Lγ) ∃y ¬ψ(x, y, z)}.

Again using proposition 2.2.5 we deduce that the above set is ∆n−1 and thus belongs to
Lα, which concludes our proof.

Lemma 2.2.8. For any ordinals γ < β, if Lγ ⪯n Lβ and β is (n− 1)-admissible, then
γ is n-admissible.

Proof. We proceed by induction on n ≥ 1, with the convention that 0-admissibility is
just transitivity. Suppose towards a contradiction that the lemma fails, it means that
there is a Πn−1 definable function over Lα such that f [γ] is unbounded in Lα for some
γ < α. Then f is obviously bounded in Lβ and since it is defined by a Πn−1 formulae
ψ(η, y), by Σn elementary embedding, we have

Lβ |= ∃x ∀(η < δ) ∃(y <Lβx) ψ(η, y). (2.1)

By using once again proposition 2.2.5 to manipulate quantifiers, the property in 2.1 is
equivalent to a Σn one, π, in Lβ and then, by Σn elementary embedding we have Lγ |= π.
Since by induction Lγ is n−1-admissible, π is still equivalent in Lγ to the property in 2.1,
which leads to the desired contradiction and concludes the proof.
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Lemma 2.2.9. Let n be a natural number and βn be the smallest ordinal β such that
Lβ |= ZF−+ “Pn(ω) exists” , then for all γ < βn, Lγ has cardinality bounded by Pn(ω)
in Lγ+1.

Proof. Once again we proceed by induction, starting with n = −1, where our claim is
that Lγ is countable in Lγ+1 and β−1 = ω (where we remove infinity from ZF−). This
case is obviously true. Note also that P0(ω) := ω (then we ask for infinity to hold).

Let n ≥ 0. For γ = βn−1, the conclusion is immediate from our inductive hypothesis.
Now we proceed by transfinite induction. If γ + 1 is a successor, the conclusion follows
from the countable number of formulae and the bound given by induction on the car-
dinality of the parameter space, Lγ. If γ is a limit ordinal less than βn, then it is not
k-admissible for some k < ω. It means that there is a Σn definable map f over Lγ such
that f [δ] is unbounded in Lγ for some δ < γ. We can now define a surjective function
from Pn(ω) to Lγ by combining the maps gδ : Pn(ω) → Lδ and gf(ζ) : Pn(ω) → Lf(ζ)
given by the induction hypothesis.

Lemma 2.2.10. Let αn be the first n-admissible ordinal, then every element of Lαn is
Σn+1 definable over Lαn without parameters.

Proof. By lemma 2.2.6 let us choose f , a parameterless Σn+1 Skolem function for Lαn .
Let H be the Skolem hull of the empty set under f (as in the proof of theorem 2.1.8).
First, H is transitive, since by lemma 2.2.9, there is a Σn counting of every δ ∈ H, which
then also belongs to H, as well as the value of every k < ω, which are the elements of δ.
Thus by theorem 2.1.6, H is a Lγ for somme γ ≤ αn. On the other hand, H ⪯n+1 Lαn

so in case γ < αn lemma 2.2.8 would imply that Lγ is (n+1)-admissible, a contradiction
to the definition of αn. Thus, H = Lαn and so every element of Lαn is Σn+1 definable
(as the value of f for some k < ω) over Lαn without parameters.

The following result is a corollary of lemma 2.2.7 and theorem 1.3.16.

Theorem 2.2.11. Let αn denote the first n-admissible ordinal, then P(ω) ∩ Lαn is a
β-model of ∆1

n+1-CA0 for n ≥ 2.

This theorem (actually 2.2.7) can be viewed as a generalisation of remark 2.2.3. Indeed
it is proved in [48, VII.6] that assuming constructibility, we have a generalized ver-
sion of the equivalence between choice schemes and comprehension schemes in second-
order arithmetic. Namely, assuming ∃X ∀Y (Y ∈ L(X)), it is provable in ATR0
that

Σ1
k+3-AC0 is equivalent to ∆1

k+3-CA0,

for any k ∈ ω.
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The last theorem also echoes the analysis in [48, VII.5] according to which the minimal
β-models of ∆1

n-CA0 are initial segments of the constructible hierarchy. These are the
kind of results that we will evoke in the following section.

2.3 Conservation Results from Constructibility
Hypotheses

Back to constructibility, we should add that a very desirable property of models M of
set theory is absoluteness. A formula is said to be absolute relative to a model M if it
has parameters in the domain of M and it is true whenever its relativisation to M is
true as well. The constructible universe is what is called an inner model of ZF, that is, a
transitive class that contains all the ordinals and satisfies the axiom of ZF (and more in
our specific case). In particular, ∆0 formulae are absolute for every transitive class M .
When introducing the constructible hierarchy, we mentioned that such construction as
the one of L was translatable in the realm of second-order arithmetic. It turns out that
we can get a more powerful absoluteness result in this specific setting. Thus we state it
in the language of second-order arithmetic.

Theorem 2.3.1 (Shoenfield absoluteness in Π1
1-CA0, [48], VII.4.14). The following is

provable in Π1
1-CA0. Let X ⊆ N and ϕ be any Σ1

2 sentence with parameter from L(X).
Then ϕ is absolute to L(X).

The above theorem implies that we can suppose constructibility to prove Σ1
2 sentences,

and actually even more. This is convenient since we have a lot of convenient results to
work with when reasoning in L, in particular concerning the axiom of choice. Let us
state hereby some of the axiom schemes related to it.

Definition 2.3.2. Assume 0 ≤ k < ω.

1. Σ1
k-DC0 is the L2-theory whose axioms are those of ACA0 plus the scheme of Σ1

k

dependent choice:

∀n ∀X ∃Y η(n,X, Y ) → ∃Z ∀n η(n, (Z)n, (Z)n)

where η(n,X, Y ) is a Σ1
k formula in which Z does not occur. We are using the

notation

(Z)n = {(i,m) : (i,m) ∈ Z ∧m < n}

and (Z)n is like in 1.2.18.
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2. Strong Σ1
k-DC0 is the L2-theory whose axioms are those of ACA0 plus the scheme

of Σ1
k strong dependent choice:

∃Z ∀n ∀Y (η(n, (Z)n, Y ) → η(n, (Z)n, (Z)n))

where η(n,X, Y ) is above.

3. If Γ is a class of formulae, Γ-CA0 is the subsystem of Z2 which consists of the basic
axioms plus the scheme of Γ comprehension:

∃X ∀n (n ∈ X ↔ ψ(n))

where ψ is any Γ formula in which X does not occur freely.

Remark 2.3.3. We can show easily that strong Σ1
k-DC0 implies Σ1

k-DC0.

Non unrelatedly with the statement of theorem 2.2.11, the following result is among
other uses the constitutive basis for the assertion that the minimal models ∆1

n-CA0 are
initial segments of the constructible hierarchy.

Theorem 2.3.4 ([48, VII.5.10]). Let M ′ be any model of Π1
1-CA0. Given X ∈ SM ′,

let M be the ω sub-model of M ′ consisting of all Y ∈ SM ′ such that M ′ |= Y ∈ L(X).
Then:

1. M is a model of Π1
1-CA0 and V = L(X).

2. M is a β2-sub-model of M ′. That is, for any Σ1
2 sentence ϕ with parameters from

M , M |= ϕ iff M ′ |= ϕ.

3. If M ′ is an ω-model or β-model, then so is M .

Furthermore, for all k ≥ 0, we have:

1. To any Σ1
k+2 formula ϕ(n1, . . . , ni, X1, . . . , Xj) with parameters from M we can

associate a Σ1
k+2 formula ϕ′ such that, for all n1, . . . , ni ∈ |M | and X1, . . . Xj ∈ SM ,

M |= ϕ(n1, . . . ni, X1, . . . , Xj)

if and only if

M ′ |= ϕ′(n1, . . . ni, X1, . . . , Xj).

2. If M ′ is a model of Γ1
k+2-CA0, so is M for Γ ∈ {Π,∆} and k ∈ ω ∪ {∞}.
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Furthermore, it provides us with a construction that can be employed to build up con-
structible versions of models of subsystems of second-order arithmetic, which can be
used to conclude conservation results. The following technique of proof for setting up a
conservation result is very important in the frame of our study. We say that a theory
T ′

0 ⊃ T0 is Π1
k conservative over T0 if any Π1

k sentence T provable in T ′
0 is also provable

in T0.

Corollary 2.3.5 ([48, VII.5.11]). Let T0 be Π1
∞-CA0, Π1

k+1-CA0 or ∆1
k+2-CA0 for 0 ≤

k < ω. Then T ′
0 = T0 + ∃X V = L(X) is Π1

4 conservative over T0.

Proof. We reason in terms of models. Consider a non provable Π1
4 sentence T =

∀X ∃Y ϕ(X, Y ) in T0. By Gödel’s completeness theorem, take any model M ′ of
T0 + ¬T . Thus for a counterexample X, M ′ satisfies ¬ϕ(X, Y ) for any Y . In par-
ticular, ∃X∀Y ¬ϕ(X, Y ) remains true in M constructed as in the preceding theorem.
The model M satisfies this way T ′

0 + ¬T . By the soundness theorem, it follows that T
is not provable from T ′

0.

As announced earlier, we can deduce from theorem 2.3.1 conjunctively with some work,
that we can use constructible hypothesis to prove any Π1

4 sentence. Let us now expose
some useful results of special interest for us that hold in L.

Theorem 2.3.6 ([48, VII.6.16]). The following is provable in ATR0. Assume 0 ≤ k < ω
and ∃X V = L(X). Then:

1. Σ1
k+3-AC0 is equivalent to ∆1

k+3-CA0.

2. Σ1
k+3-DC0 is equivalent to ∆1

k+3-CA0 plus Σ1
k+3-IND.

3. Strong Σ1
k+3-DC0 is equivalent to Π1

k+3-CA0.

4. Σ1
∞-DC0 is equivalent to Π1

∞-CA0.

Now we can carry on these results as conservation statements.

Corollary 2.3.7 ([48, VII.6.20]). Assume 0 ≤ k < ω.

1. Σ1
k+3-AC0 is Π1

4 conservative over ∆1
k+3-CA0.

2. Σ1
k+3-DC0 is Π1

4 conservative over ∆1
k+3-CA0 plus Σ1

k+3-IND

3. Strong Σ1
k+3-DC0 is Π1

4 conservative over Π1
k+3-CA0.
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Finally, it is a known fact that L |= ZFC. Our second-order arithmetic version of L
corresponds in fact to Lω1 , with ω1 being the first uncountable ordinal. It is also a
regular cardinal and as a matter of fact, we can argue in Z2 that L(X) is gonna be a
model of ZFC−, essentially due to the results we exposed in the present section. This
way as it is presented in the introduction of [38], we can use the same reasoning that we
used in the proof of corollary 2.3.5 to show the next theorem.

Theorem 2.3.8. The theory ZFC−, even with a definable well ordering of the universe
assumed as well, is a Π1

4 conservative extension of Z2.
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Chapter 3

Some Logical Bounds around
Determinacy on the Edge of Systems
of Arithmetic

3.1 The Limit of Determinacy in Second Order
Arithmetic

The following result was first proved by Wolfe in 1955.

Theorem 3.1.1 (ZC− + Σ1-Replacement). All Σ0
2 games are determined.

Lemma 3.1.2. Let B ⊆ A ⊆ [T ] with B being closed. If Anais has no winning strategy
in the game G(T,A), then there is a strategy τ for Bruce such that every x ∈ [τ ] has a
finite initial segment p verifying

[Tp] ∩B = ∅ and Anais has still no winning strategy in G(Tp, A).

Proof. AssumeG(T,A) is not a win for Anais. Let P be the union of bouquets around the
sequences p in T satisfying the two properties announced. Therefore, we want to prove
that G(T, P̄ ) is a win for Bruce. Since P is open, by open determinacy (theorem 1.1.6),
we would otherwise have that Anais has a winning strategy σ. Note that σ ⊆ P . Our
goal is to prove that σ is also winning in the original game, a contradiction. In this scope,
suppose that Bruce plays only moves that are non-losing in the original game G(T,A)
(as in the proof of theorem 1.1.6). We are then playing in G(W, P̄ ) where W ⊆ T is
called the non-losing quasistrategy of Bruce (for G(T,A)).

Consider p ∈ σ ∩W , since p is non-losing for Bruce in G(Tp, A) but p ∈ σ ⊂ P we must
have [Tp] ∩ B ̸= ∅. Because B is closed and p was arbitrary, any x ∈ [σ] (the limit of
his finite initial segments p ⊂ x) is also in B ⊆ A, making of σ a winning strategy in
G(W,A) and so in G(T,A), a contradiction.
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Proof of theorem 3.1.1. Let T be a pruned tree and A ⊆ [T ] a Σ0
2 set,

A =
⋃
i<ω

Ai,

with closed sets Ai. Suppose Anais has no winning strategy in G(T,A). We describe
informally how Bruce can use the preceding lemma to set up a winning strategy τ . First,
apply the lemma for B = A0 and play the given strategy τ0 until you reach a position
p0 verifying the predicted property of τ0. Iterate this process ω times. After this point,
τ can be arbitrary since by construction [τ ] ∩Ai = ∅ for all i < ω, thus τ is winning for
Bruce and we have proved the theorem.

Empowerment of the methods of this theorem was done by Davis in 1964 to prove Σ0
3

determinacy in the same setting. However, we present now a generalisation of this
result (from [38]), while the proof in itself, without the reverse mathematics frame-
work is a weakening of the (unpublished) proof of ∆0

4 determinacy of Martin. It
turns out that the proof of Martin cannot be implemented inside second-order arith-
metic.

From now on we fix m ∈ ω, m ≥ 1. We will show that second-order arithmetic can prove
the determinacy of games “between” Π0

3 and Π0
4. Precisely we introduce the following

hierarchy.

Definition 3.1.3 (Hierarchy of differences (for Π0
α sets)). In any topological space X,

given a natural number n and an ordinal number α, we say that a set A is (Π0
α)m if there

are Π0
α sets A0, A1, . . . Am−1, Am = ∅ such that

x ∈ A ↔ the smallest i such that x ̸∈ Ai is odd.

We say that the sequence {Ai : i ≤ m} represents A (as an (Π0
α)m set).

Proposition 3.1.4. For any m < 0, taking A as defined in the preceding definition, we
can suppose that for all 0 < i < m, Ai ⊆ Ai−1.

Proof. We prove this by induction on i. Since 0 is even and the smallest natural number,
we can suppose that every Ai ⊆ A0. Suppose 1 < i < m and x ∈ Ai \ Ai−1, since by
induction hypothesis Ai−1 ⊆ Ai−2 ⊆ · · · ⊆ A0 and we are interested in the smallest j
such that x ̸∈ Aj these preceding sets already takes into account whether or not x ∈ A
and we can suppose Ai ⊆ Ai−1, since otherwise we could replace Ai by Ai ∩ Ai−1.

The figure 3.1 is an example of a (Γ)5 set for a class Γ = Π0
α for some α and depicts the

idea that we can suppose the sequence to be nested backwards.
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A4

A3

A2

A1

A0

Figure 3.1: A (Π0
α)5 set, where A2 plays the same role as A2 ∩ A1.

It is easy to see that ⋃
n<ω (Π0

α)n is exactly the set of the boolean combinations of Π0
α

sets. Moreover, this is a result of Kuratowski ([29]) that

∆0
α+1 =

⋃
β<ω1

(Π0
α)β,

the finite hierarchy being extendable to a transfinite one. This works because, as we saw
in the proof of proposition 3.1.4, β differences of Π0

α can give us infinite intersections of
Π0
α sets, but this, in particular, doesn’t increase the complexity of our set since Π classes

are closed under infinite intersections. On the other hand, if we had defined in the same
way a hierarchy of differences for Σ sets, we would have obtained (Σ0

α)ω = Π0
α+1 because

we would have allowed from them on, infinite unions of Σ0
α sets. So we need to change

the definition for the hierarchy of differences of Σ sets.

Definition 3.1.5 (Hierarchy of differences (for Σ0
α sets)). In any topology space X, given

a natural number n and an ordinal number α, we say that a set A is (Σ0
α)m if there are

Π0
α sets A0, A1, . . . Am−1, Am = X such that

x ∈ A ↔ the smallest i such that x ∈ Ai is odd.

We say that the sequence {Ai : i ≤ m} represents A (as an (Π0
α)m set).
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Here we can assume that the sequence is nested upwards. However, both hierarchies are
very close and for a given m are either complementary or equal, depending on the parity
of m and thus if the last set is contained in the difference or not.

For determinacy, we can prove that the existence of winning strategies for (Π0
α)β payoff

sets is equivalent to the existence of winning strategies with (Σ0
α)β payoff sets, for any

ordinal numbers α and β. In the same way, it doesn’t matter if we change “odd”, to
“even” in the definition, with regards to determinacy. One of the numerous proofs that
can be done to show this claim is presented in [38] and the others are in the same
vein.

An example we want to highlight is that at our level of complexity, determinacy in the
Baire space, ωω, is equivalent to determinacy in the Cantor space, 2ω. This is illustrated
by the following proposition.

Proposition 3.1.6. For any complexity of a class of definable sets Γ containing the ∆0
3

sets, we have Γ-Det∗ ↔ Γ-Det. In other words, determinacy for the class Γ of payoff
sets is independent of whether we are in Baire space or Cantor space.

Proof. Given f : ω → ω we encode it in 2ω by

cf = 0f(0)10f(1)10f(2) . . . 10f(n) . . . so that

f(n) = ĉf = m ↔ ∃k
[
cf (k + 1) = 1 ∧ cf (k −m) = 1 ∧

k+1∑
i=0

cf (i) = n+ 1
]
.

A strategy for GA can thus be gotten effectively from one for GÃ with Ã ⊆ 2ω such that

x ∈ Ã ↔[∃n ∀(m > n) x(2m+ 1) = 0]∨
[(∀n ∃(m > n) x(2m) = 1) ∧ (x̂ ∈ A)],

which is a ∆0
3 ∪ Γ set. We added conditions on odd and even moves such that neither

player have an interest to play infinitely many zeroes, which behaviour, if adopted by
both players, would create a binary sequence that doesn’t code any sequence of natural
numbers.

Conversely, given any A ⊆ 2ω, a strategy for GA can be found effectively from for GǍ

with Ǎ ⊆ ωω such that

x ∈ Ǎ ↔ (∃n x(2n+ 1) ̸∈ {0, 1}) ∨ x ∈ A,

which is a Σ0
1 ∪ Γ set. Again we added a condition on odd moves such that player two

cannot win too easily, by deciding to play a non-binary move and this way obviously
create an element out of the payoff set.
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Although the exact strength of various determinacy axiom schemes is to this day fully
characterised, as we already mentioned for Σ0

1 determinacy ( [49]) or even for, ∆0
2, Σ0

2, ∆0
3,

Σ0
3 determinacy in terms of inductive definitions as showed in [18,37,51,52] by Hachtman,

MedSalem and Tanaka, we still don’t know what is the exact characterisation, in terms
of reverse mathematics of (Π0

3)m determinacy. What we know is that these axioms
are stronger and stronger, reaching the edge of the provability from Z2. This is what
the theorem we want to expose now is about, from the same article of Montalbán and
Shore [38].

Theorem 3.1.7 (Π1
m+2-CA0). All (Π0

3)m games are determined.

First notice that, writing SI,II for SI,II(2<ω, X), (Π0
3)m-Det is the Π1

3 sentence

“∀X ∈ (Π0
3)m” [(∃Y ∈ SI) (∀Z ∈ SII) Y ⊕ Z ∈ X ∨

(∃Z ∈ SII) (∀Y ∈ SI) Y ⊕ Z ̸∈ X],

where Z ⊕ Y is identified with the play produced by player I and player II playing
their respective strategies. Actually, the latter is an axiom scheme, where we should
replace our quantification over (Π0

3)m by an arbitrary (Π0
3)m formula as it is defined

for example in [45], according to definition 3.1.3. Hence, since strong Σ1
m+2-DC0 is Π1

4
conservative over Π1

m+2-CA0 in virtue of 2.3.7 we will assume strong Σ1
m+2-DC0 as well

as Π1
m+2-CA0.

In a similar idea to the one from 3.1.1, we want to unfold a fixed set A given by
the finite nested sequence ∅ = Am ⊆ · · · ⊆ A1 ⊆ A0 of Π3

0 sets. To win the game,
player I want to reach the exterior layers of the even sets while player II has to have
the opposite behaviour. We set up the construction of the Ai for 0 ≤ playerI < m
as

Ai =
⋂
k<ω

Ai,k and Ai,k =
⋃
j<ω

Ai,k,j,

with Σ0
2 sets Ai,k and closed sets Ai,k,j. In the following, we will consider sequences

s ∈ ω≤m and trees T ⊆ 2ω. Given s we put l := m− |s|.

Definition 3.1.8. We define Σ1
|s|+2 relations P s(T ) by induction on |s| ≤ m:

• When |s| = 0, P ⟨ ⟩(T ) iff

player I (resp. II) has a winning strategy in G(T,A) if l is even (resp. odd).
(3.1)

• For |s| = n + 1 and l even, P s(T ) iff there is a quasistrategy U for player I in S
such that

[U ] ⊆ A ∪ Al,s(n) and P s[n](U) fails. (3.2)
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• For |s| = n + 1 and l odd, P s(T ) iff there is a quasistrategy U for player II in S
such that

[U ] ⊆ Ā ∪ Al,s(n) and P s[n](U) fails. (3.3)

A quasistrategy U witnesses P s(T ) if U is as required in the appropriate clause, the latter
being a Π1

|s|+1 sentence.

Definition 3.1.9 (local witness). A quasistrategy U locally witnesses P s(T ) if |s| = n+1
and U is a quasistrategy for player I (resp. II) if l is even (resp. odd) and there is D ⊆ T
such that, for every d ∈ D, there is a quasistrategy Rd for player II (resp. I) if l is even
(resp. odd) in Td such that the following conditions are satisfied:

1. ∀d ∈ D ∩ U , Ud ∩Rd witnesses P s(Rd).

2. [U ] \ ⋃
d∈D[Rd] ⊆ A (resp. Ā).

3. ∀p ∈ S ∃≤1d ∈ D, d ⊆ p ∧ p ∈ Rd.

We observe that “U locally witnesses P s(T )” is a Σ1
|s|+2 sentence.

The following lemma will be useful in a recursion in lemma 3.1.11 and will make us more
familiar with the clauses of the preceding definition. It tells us that if a local witness is
not a witness for the second reason, then we can construct a local witness for a preceding
property.

Lemma 3.1.10. Let |s| = n + 1 > 1, if U locally witnesses P s(T ) and P s[n](T ) is
witnessed by some T̂ , then there is a local witness Û of P s[n−1](T̂ ) if n > 1. When
n = 1, P s[n](U) fails.

Proof. WLOG, let m − n(= m − |s[n]|) being odd. So T̂ is a player II’s quasistrategy
(we can suppose T̂ ⊆ U). Suppose n > 1.

The main goal for Û is to escape from the range of each Rd. Let d ∈ D̂ iff d ∈ T̂ ∩D and
player II has a winning strategy in G(T̂d, ¯[Rd]), a Σ1

2 set. For d ∈ D̂ we let R̂d be player
II’s non-losing quasistrategy in this game and Rd = ∅ for d ∈ D \ D̂. The quasistrategy
of player II is a Π1

2 set as discussed in remark 1.2.11. Since d ∈ D is a Σ1
2 condition, the

collection {(r, d) : d ∈ D̂ ∧ r ∈ R̂d} exists by Π1
3-CA0. The idea is now that either player

I can get out of a given Rd, or he has to get out of R̂d, so that, by definition, player I
gets a strategy to go out of Rd.

By hypothesis [R̂d] ⊆ [T̂ ] ⊆ Ā∪Am−n,s(n−1), so R̂d satisfies the first condition to witness
P s[n](Ud ∩Rd). However, by property (1) of the local witness, Ud ∩Rd witnesses P s(Rd)
and so, in particular, P s[n](Ud ∩ Rd) fails and then R̂d is not a witness for it. As a

62



consequence, the second condition must fail with R̂d, that is there is a witness Ûd for
P s[n−1](R̂d). We then define an indexed sequence (Ûn)n∈N such that

∀n η(n, Ûn), where η(n, Ûn) := n ∈ D → Ûn witnesses P s[n−1](R̂d),

by Σ1
|s|-AC0. Finally, we similarly choose strategies for player I σp,d, winning inG(T̂p, ¯[Rd])

for d ∈ D̂ when some p ̸∈ R̂d is reached.

We now (arithmetically in the above parameters) define by the following a quasistrategy
Û for player I in T̂ .

(i) If p ∈ Û and there is no d ∈ D such that d ⊆ p and p ∈ Rd, then the child of p in
Ū are the same as those in T̂ , otherwise;

(ii) If p ∈ Û is a minimal extension of some d ∈ D such that p ∈ Rd \ R̂d, then we
escaped player II’s non-losing strategy, which means that player I can play σp,d
until she reaches a p ̸∈ Rd, otherwise;

(iii) If p ∈ Û ∩ D̂, let Ûp = Ûp as long as we stay in R̂d.

We now prove the three conditions of local witnessing.

1. Take p ∈ Û ∩ D̂, by (iii) Ûp ∩ R̂d = Ûp, which is witnessing P s[n−1](R̂d).

2. Any play x ∈ [Û ] \ [R̂d] would have escaped Rd in some finite position by (ii).
Thus

[Û ] \
⋃
d∈D

[R̂d] ⊆ [U ] \
⋃
d∈D

[Rd] ⊆ A,

by hypothesis.

3. This condition is immediate from the corresponding hypothesis since we have just
restrained D and the Rd’s.

Finally when n = 1, we suppose for a contradiction that there exists a T̂ such as for
the case n > 1. We can then keep the same construction with the following differences.
When we choose a witness Ûd for P s[n−1](R̂d), we must take a winning strategy for player
I in G(R̂d, A) and we need to show that [Û ] ⊆ A to see that it witnesses P ⟨ ⟩(T̂ ) for
the desired contradiction. The point here is that if we stay in some Rd, then we follow
Ud, which is a winning strategy for player I in G(R̂d, A). If we leave R̂d, then we leave
Rd by (ii) in the definition of Û . If we leave every Rd, then we follow T̂ and then stay
in U and also wind up A by clause (2) of the definition of U being a local witness for
P s(T ).

Now that the above construction has been done we can prove that there is no “local-only”
witness.
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Lemma 3.1.11. If U locally witnesses P s(T ), then U witnesses P s(T ).

Proof. WLOG, we suppose that l is even. Let us show the first property of the witness.
Consider x ∈ [U ]. If x ∈ A there is nothing to prove. If not, by property (2) of the local
witness, x ∈ [Rd] for some d ∈ D. Then, by (1), Ud ∩ Rd witnesses P s(Rd) and so by
the first property of the latter witness, x ∈ Al,s(n) as required.

We now show the second part of the definition by induction on |s| = n+1 ≤ m. WLOG,
we suppose m odd. We begin with n = 0. Suppose for a contradiction P ⟨ ⟩(U), that is
there is a winning strategy τ for player II in G(U,A).

We claim that there is a d ∈ D belonging to τ such that every x ⊇ d in [τ ] is also in
[Rd]. Suppose the contrary: ∀d ∈ D ∃d ⊂ x ∈ [τ ] \ [Rd]. Now note that every position

e ∈ τ \
⋃

d∈D,d⊂e
Rd,

has a minimal extension d̂ ∈ D ∩ τ . Otherwise, for any e ⊂ x ∈ [τ ] we would have
x ̸∈ ⋃

d∈D[Rd]. By property (2) of the local witness it would then follow that x ∈ A, a
contradiction with our choice of τ . Next note that, by our assumption, any such d̂ has a
minimal extension ê ∈ τ \Rd̂. By property (3) of the local witness, no d̂ ⊂ e′ ⊂ ê is in D
and so ê has the same property than e. We can iterate this process to create a sequence
ej ⊆ τ such that ⋃

ej = x ̸∈ ⋃
d⊂x,d∈D R

d, which leads, as above, to a contradiction.

So we have such d. Thus, τd is a winning strategy for player II in G(Ud ∩ Rd, A), that
is, P ⟨ ⟩(Ud ∩ Rd) contradicting property (1) of the local witness and so establishing the
desired property.

Now suppose s = n+ 1 > 1. If n = 1, lemma 3.1.10 gives the conclusion. If n > 1, sup-
pose for a contradiction that P s[n](T ) is witnessed by some T̂ . By applying lemma 3.1.10
we get a local witness Û of P s[n−1](T̂ ). Then the induction hypothesis implies that Û
is a witness for the same property, contradicting the existence of T̂ and concluding our
induction.

Definition 3.1.12 (Failure everywhere). We say that P s(T ) fails everywhere if P s(Tp)
fails for every p ∈ S. This is a Π1

|s|+2 sentence.

Lemma 3.1.13. If P s(T ) fails, then there is a quasistrategy W in S such that P s(W )
fails everywhere.

Proof. WLOG, we suppose l to be odd. First, if |s| = 0, then player II does not have
a winning strategy. Then as we are used to, we define W to be player I’s non-losing
quasistrategy and verify that P s(W ) fails everywhere.
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Now suppose |s| = n + 1 and, WLOG that l is even. Invoking Π1
|s|+2-CA0 let D be the

set of the annoying d’s, i.e.

d ∈ D ↔ d ∈ S ∧ P s(Td) ∧ ¬P s(Td[|d|−1]),

that is the minimal such d, an intersection of a Π1
|s|+2 and a Σ1

|s|+2 set. We suppose D to
be non-empty and, as we often do now, use Σ1

|s|+2-AC0 to chose a sequence of witnesses
Ud of P s(Td) for each d ∈ D.

Consider now the game G(T,B) where B = {x ∈ [T ] | ∃d ∈ D d ⊆ x}. We claim that
player I has no winning strategy in this game. If there were one σ, then we could define
a quasistrategy U for player I in T by following σ until a position d ∈ D is reached,
at which point we move into Ud. With D and Rd = Td we can easily verify that three
clauses of U locally witnessing P s(T ) are satisfied:

1. Take d ∈ D ∩ U , Ud ∩Rd = Ud witness P s(Td);

2. Since [U ] ⊆ ⋃
d∈D[Ud], [U ] \ ⋃

d∈D[Td] = ∅;

3. Taking any p ∈ T if there exists d ⊆ p such that p ∈ Rd the unicity follows from
the minimality of d;

which lead, by lemma 3.1.11, to a contradiction with the fact that P s(T ) fails.

Thus, we let W be player II’s non-losing quasistrategy in G(T,B) and σp be a chosen
winning strategy for player I if p ∈ S \ W is reached. Suppose for a contradiction
that W is not as required. Then for some q ∈ W we can find a witness Û of P s(Wq).
Consequently, we define a quasistrategy U for player I in Tq:

(i) We begin to set up U ∩Wq = Û ;

(ii) If p ∈ U \W , player I plays σp until she reaches a position d ∈ D from where she
plays Ud, witnessing P s(Td).

If we now consider U , D̂ := D ∪ {q}, Rd := Td and Rq = Wq, we verify that U locally
witnesses P s(Tq):

1. Take d ∈ D̂ ∩ U , Ud ∩ Td witnesses P s(Td) and U ∩Wq = Û , P s(Wq);

2. As before, [U ] \ ⋃
d∈D[Rd] ⊂ ∅;

3. Again it follows from minimality and the fact that q ∈ W , which is non-losing.

Using lemma 3.1.11 we know that P s(Tq) holds, but then by definition of D there is a
minimal d ⊆ q in D, which contradicts the choice of W . Thus P s(W ) fails everywhere.

Definition 3.1.14 (Strong witness). For |s| = n + 1, W strongly witnesses P s(T ) if,
for all p ∈ W , Wp witnesses P s(Tp), that is, W witnesses P s(T ) and P s[n](W ) fails
everywhere. This is a Π|s+1|1 sentence.
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The following lemma is straightforward from the definition and the last lemma about
properties failing everywhere.

Lemma 3.1.15. If P s(T ), then there is a W that strongly witnesses it.

Now we prove the principal result about the property P , and this is the last one we need
to prove theorem 3.1.7.

Lemma 3.1.16. If |s| = n+ 1, then at least one of P s(T ) and P s[n](T ) holds.

Proof. We prove the lemma by reverse induction on n < m. Suppose WLOG that
m − n is odd and P s(T ) fails. Using Σ1

m+2-DC0, we define by induction on the length
of positions a quasistrategy U for player II in S along with D ⊆ S and Rd for d ∈ D
showing that

U locally witnesses P s[n](T ) if n > 0 and U witnesses P s[n](T ) if n = 0.

It suffices then to use lemma 3.1.11 to have the desired property in every case.

Initiation: ⟨ ⟩ ∈ U , we say that it marks 0.

(i) If n = m − 1, by lemma 3.1.13 we set W ⟨ ⟩ be a quasistrategy for player II in S
such that P s(W ⟨ ⟩) fails everywhere.

(ii) If n < m − 1, then we know by reverse induction that P s⌢0(T ) holds. Applying
lemma 3.1.15 there exist a W ⟨ ⟩ strongly witnessing this fact and so P s(W ⟨ ⟩) fails
everywhere.

Recursion step: Take q ∈ U marking j < ω, with P s(W q) failing everywhere. Consider
the closed game

G(W q, Am−n−1,s(n),j).

If it is not a win for II, we put q ∈ D and define R̂q to be player I’s non-losing quasistrat-
egy in this game. We also define Rq to be R̂q on W q and to simply Tq elsewhere. Thus,
[R̂q] ⊆ Am−n−1,s(n),j ⊆ Am−n−1,s(n) by definition and since R̂q is a non-losing quasistrat-
egy for a closed set. Thus, if P s[n](R̂q), the two properties of R̂q witnessing P s(W q)
would be satisfied, contrary to our assumption that P s(W q) fails everywhere. So we
may take U q to be a witness for P s[n](R̂q) (a Π1

s relation). We now continue to define U :

1. On R̂q, U = U q;

2. If p ̸∈ R̂q (p = q if the game is not a win for I), player II can follow a winning
strategy τp until he reaches a q′ with [W q

q′ ] ∩ Am−n−1,s(n),j = ∅,

which one exists since player II is playing an open game. As a consequence, we say that
q′ marks j + 1. Now P s(W q

q′) fails everywhere since P s(W q) does.
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(i) If n = m− 1, we define W q′ = W q
q′ .

(ii) If n < m − 1, then by our reverse induction on n, P s⌢j+1(W q
q′) and there exists

W q′ strongly witnessing this fact, as well as P s⌢j+1(Tq′).

In the cases (ii), with n < m − 1, we have to choose strategies, however, each choice
depends on the preceding ones. For this reason, we have to use the scheme of strong
dependent choice, to have the existence of a sequence Z = (Zn)n∈N, such that

∀n ∀Y (η(n, Zn, Y ) → η(q, Zn, Zn)),

where η(n, Zn, Y ) := Y strongly witnessesP
s⌢n((Zn−1)q) if n > 0,

P s⌢0(T ) if n = 0,

a Π1
|s|+2 and so at worst Π1

m+1 and so Σ1
m+2 relation, where Zn = W q for the q marking n

as in our construction. Actually, Z should also contain the information about the U q’s
but this does not increase the logical complexity of η.

If n > 0 we show the properties for U , together with D and Rd locally witnessing P s[n].

1. Take d ∈ D ∩ U , by construction Ud ∩ Rd = Ud ∩ R̂d = Ud and Ud witnesses
P s[n](R̂d);

2. We prove it here under;

3. It follows from the fact we put a new d ∈ D only once we have left R̂d.

Let x ∈ [U ] and

∅ = q0 ⊂ q1 ⊂ · · · ⊂ qi ⊂ . . .

be the strictly increasing sequence of the initial segments q of x such that qj marks j.
By construction, each qj ∈ D. If the sequence terminates at some q = qk, then, by
definition, x never leaves R̂d and so x ∈ Rd. So if x is out of the Rd’s, the sequence is
infinite and

x ̸∈ Am−n−1 ⊂ Am−n−1,s(n) =
⋃
j<ω

Am−n−1,s(n),j.

If n + 1 = m, x ̸∈ A0 implies x ̸∈ A and we are done. If n + 1 < m, as W qj witnesses
P s⌢j(Tqj+1) and m− |s⌢j| is odd,

x ∈ Ā ∪
⋃
j<ω

Am−n−2,j = Ā ∪ Am−n−2.
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As, by our case assumptions, m−n−1 is even, it follows that x ∈ Am−n−2 \Am−n−1 ⊆ Ā.
By lemma 3.1.11, U witnesses P s[n].

Finally, if n = 0, then we argue that U is a winning quasistrategy for player II in
G(T,A). Consider any x ∈ [U ]. If there is a d ∈ D such that x ∈ [R̂d], then x ∈ Ud

by construction. Now Ud is a witness for P ⟨ ⟩(R̂d) (as n = 0, s[n] = ⟨ ⟩), that is, Ud is
a winning strategy for player II in G(R̂d, A). Thus x ∈ Ā, as required. On the other
hand, if x leaves every R̂d, then, by the argument above, x ∈ Ā as well.

Proof of theorem 3.1.7. WLOG, we suppose that m is odd and player II has no winning
strategy in G(T,A), that is P ⟨ ⟩(T ) fails. By lemma 3.1.13, there is a quasistrategy W ⟨ ⟩

that player I can follow such that P ⟨ ⟩(W ⟨ ⟩) fails everywhere. We define a quasistrategy
U for player I in W ⟨ ⟩ by induction on |p| for p ∈ U .

To ⟨ ⟩ ∈ U , we associate the quasistrategy W ⟨ ⟩ which fail to P ⟨ ⟩(W ⟨ ⟩) everywhere.
Suppose then p ∈ U , |p| = j + 1 and W p has been defined with P ⟨ ⟩(W p) failing
everywhere. The child q of p in U are the same as those of p in W p. Since P ⟨ ⟩(W p) fails
everywhere, so does it for W p

q and by lemma 3.1.16, it implies P ⟨j⟩(W p
q ). Now we use of

lemma 3.1.15 to get the existence of a W q that strongly witnesses it. To continue our
induction, we have to choose such a W q, which depends on the previously chosen ones,
we can do it since we dispose of strong Σ1

3-DC0, the same way as exposed in the proof
of the preceding lemma.

Now we show that U is winning, giving rise to a winning strategy for player I who can
play the minimal move each time she has to choose. Consider any play x ∈ [U ]. By
construction, for every j

x ∈ [W x[j+1]] and W x[j+1] witnesses P ⟨j⟩(W x[j]
x[j+1]).

By the first property of the witness, for every j

x ∈ A ∪ Am−1,j (resp. Ā ∪ Am−1,j).

As ⋂
j<ω Am−1,j = Am−1 ⊆ A (resp. Ā) by definition, it follows that U is winning for

player I (resp. II) in G(A, T ), as desired.

This result witness that determinacy enlarges the field of reverse mathematics, since
usually, all theorems provable in Z2 are equivalent to one of the big five and few are
known to be stronger than Π1

1-CA0. (one of the few example, for Π1
2-CA0 is studied

in [42]). As we are about to see, we can’t hope for any reversal of this theorem as
from the same paper [38], it is proved that ∆1

m+2-CA0 does not prove (Π0
3)m-Det and

even “∀n (Π0
3)m-Det” does not prove ∆1

2-CA0. One can find further analysis about that
kind of limitative results, notably by the works of Montalban and Shore, Pachecho and
Yokoyama and Welch in [39,45,53].
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3.2 Failure of Determinacy in Subsystems of Z3

As well as when Martin proved in [34] that Borel determinacy does require the axiom of
replacement, showing that ZC was not sufficient to prove Borel determinacy, we could
wonder how much of determinacy remains when we only allow moderate use of the power
set axiom. Such a result was first proved by Friedman [15], who showed that they are
Σ0

5 countable games such that ZFC− is not powerful enough to prove their determinacy
that is, the existence of winning strategies for all of them. We will first present a sharper
result of Martin. To this aim, we need a way to construct a canonical model from a
given complete, consistent theory, extending our setup.

Definition 3.2.1 (The term model). Let T be a complete theory in the language of
set theory extending some sub-theory of ZFC− and satisfying Constructibility. The
term model

A = (|A|,∈A)

of T is defined as follows. Two formulae ϕ(v) and ψ(v) will be T -equivalent if within T

• The set v∗ being the <L-least v such that

v = 0 if ∀v′ ¬ϕ(v′);
ϕ(v) otherwise,

• The set w∗ being the <L-least w such that

w = 0 if ∀w′ ¬ϕ(w′);
ψ(w) otherwise,

• v∗ = w∗.

We then put |A| as the sets of such equivalence classes, labelled by their respective rep-
resentative and we define ∈A as the ∈ relation between representatives.

This is a standard way to construct models out of complete theories, similar to the proof
of Gödel’s completeness theorem as done in [12, 48]. The following result is an exercise
in [35] and a theorem in [17] which will serve as a warm-up for the result we want to
show.

Theorem 3.2.2. The determinacy of all Σ0
4 countable games is not provable in ZFC−.

Proof. Let β0 be the minimal ordinal such that Lβ0 |= ZFC−.
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Claim 1: There is no a ⊆ ω such that a ∈ Lβ0+1 \Lβ0 and β0 is the least ordinal with
this property.

This is a consequence of theorem 2.1.8 from which it follows that β0 is also the first
ordinal such that Lβ0 |= Z− + Σn replacement, for every 0 ≤ n. Then, for every
ordinal α < β0 such that Lα |= Infinity, some amount of separation have to fail.

We define a Σ0
4 game G in 2<ω such that G is a win for player I but the set of Gödel

numbers of sentences true in Lβ0 is recursive uniformly in any strategy for player I in G.
For each play x of this game, we set

TI(x) = {ϕ : x(2♯(ϕ)) = 1}
TII(x) = {ϕ : x(2♯(ϕ) + 1) = 1}.

Each player loses automatically if for any of them their set Ti(x), i = I, II does not
correspond to the sentences true in an ω-model of ZFC−+“V = Lβ0”.

Claim 2: The latter is a Π0
2 condition.

By “V = Lβ0”, we mean, V = L and ∀β Lβ ̸|= ZFC−. Obviously, saying that the axioms
of ZFC−+“V = Lβ0 are included in TI or TII is harmless while asking of them to be
complete is Π0

1. Requiring the term model M to be an ω one is the Π0
2 condition

∀i ∈ ωM ∃n M |= i =
n∑
j=0

1.

Supposing this does not happen, the term models of TI(x) and TII(x) are then isomorphic
to ω-models. Let MI and MII be such ω-models. Player I then wins if and only if one
of the following holds:

1. The model MI is isomorphic to an initial segment of MII;

2. There is an ordinal α of MI such that LMI
α is isomorphic to an initial segment of

MII but LMI
α+1 is not.

Claim 3: There is a fixed Σ1
2 formula ϕ(X, Y ) of second order arithmetic such that,

given an ω-model M as required earlier, for α ∈ Ord(M) and (ω ⊇)b ∈ LM
α+1 \ LM

α ,

• LM ∩ P(ω) |= ∃Y ϕ(b, Y );

• For all c ∈ LM
α+1 ∩ P(ω),

LM ∩ P(ω) |= ϕ(b, c) ↔ c codes a model (ω,E) ≃ LM
α .
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Let us first write the set-theoretic version of ϕ such that it works as intended. We will use
the ∆Set

0 predicates func, ord, lim, bij to summarize the condition of being respectively a
function, an ordinal, a limit (ordinal) and a bijection and define by dom(f), the domain
of a function f .

ϕSet(x, y) ↔ ∃f ∃α func(f) ∧ ord(α) ∧ [dom(f) = α + 1] ∧
[f(0) = ∅] ∧ ∀(γ < α) [f(γ + 1) = Def(f(γ)) ∧ lim(γ) → f(γ) =

⋃
β<γ

f(β)]∧

x ̸∈ f(α) ∧ x ∈ Def(f(α)) ∧
∃(j : ω → f(α)) bij(j) ∧ [∀m,n ∈ ω ((m,n) ∈ y ↔ j(m) ∈ j(n))].

Roughly, the formula is saying that there is some Lα, defined as the image of a function f
(line 1-2). Moreover, Lα is uniquely determined by being the last step of the constructible
hierarchy before being able to define x (line 3). We finally add that the membership
relation has to be countably coded through the relation y ⊆ ω × ω (line 4). This is
exactly the way the constructible hierarchy is defined in [48, VII.4].

It is clear that ϕ(x, y)Set is the desired formula, hence we may take its second-order
translation, which is a Σ1

2 formula ϕ(X, Y ), according to theorem 1.3.16. Thus because
of claim 1, the second-order part of M determines the isomorphism type of M.

Finally, equality between subsets of ω is a Π0
1 condition. So we may define A ⊆ ω such

as to code the set of isomorphic part of ω from MI and MII as

(z, w) ∈ A ↔ ∃x ∈ RI ∃y ∈ RII(MI |= x codes z ∧ MII |= y codes w ∧
∀(n ∈ ω) (MI |= n ∈ x ↔ MI |= n ∈ y)),

which is thus a Σ1
2 set. This way, in virtue of claim 3, condition 1 is just

∀z ∈ RMI ∃w (z, w) ∈ A,

which is Π0
3. Similarly, we will express condition 2 as

∃α (MI |= “α is an ordinal number with successor α + 1”)
[∀b ∈ RMI ((MI |= b ∈ Lα) ∃c ∈ RMII (b, c) ∈ A) ∧

∀d ∈ RMI ∀e ∈ RMII ((MI |= ϕ(α, d)) → (d, e) ̸∈ A)],

which is a Σ0
4 sentence.

Now that we have defined Π0
4 game G, we prove that neither player can have a winning

strategy contained in Lβ0 . Indeed, G is a win for I who can play the set of sentences
that are true in Lβ0 . So now suppose that there is a winning strategy for I in Lβ0 and
that II is playing such as copying every move of I then the winning strategy will exactly
be the set of sentences that are true in Lβ0 since otherwise, from the very moment
where I decide to deviate that strategy, supposing that II continue to play the theory
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of Lβ0 , the so-said winning strategy of I would lead to the victory of the second player.
However, Th(Lβ) ∈ Lβ is a contradiction to theorem 2.1.7 since it defines truth of Lβ
inside Lβ.

This result is sharpened by Montalbán and Shore in [38]. Assuming constructibility,
ZFC− is equivalent to being n-admissible for all n, that is to the theory

KP +
⋃

1≤n<ω
(∆n−1 collection + Σn−1 separation)

does not prove the determinacy of Π0
4 games, since it is false in some models of the

theory, as we just showed. The result of Montalbán and Shore is a local version of this
theorem, leading to a finer theorem of unprovability.

Theorem 3.2.3 ([38]). For all 2 ≤ n < ω,

KP + ∆n−1 collection + Σn−1 separation ̸⊢ (Π0
3)n−1-Det

By the translation in second-order arithmetic from the theorem 2.2.11 and theorem 3.1.7
of the preceding section, Montalbán and Shore thus proved that

∆1
n+2-CA0 < (Π0

3)n-Det < Π1
n+2-CA0,

for 1 ≤ m, in terms of provability power along the strength of the determinacy scale.

On the other hand, Martin presented results in [35, 2.3] showing

ZFC− + “Pn(ω) exists” < Π0
n+4-Det < ZFC− + “Pn+1(ω) exists”,

for all n < ω (with P0(ω) = ω). Our goal is now to generalize the proof of Montalbán
and Shore (theorem 3.2.3), according to the first inequality of Martin, in the following
way.

Theorem 3.2.4. For all 2 ≤ n < ω,

KP2
n := KP + “P(ω) exists” + ∆n−1 collection + Σn−1 separation ̸⊢ (Π0

4)n-Det.

We will see that indeed, when going beyond the countable case, we need an additional
condition compared to the theorem of Montalbán and Shore. Along the way we intro-
duced the notation KPin where the subscript 1 ≤ n denotes the amount of separation
and collection and the superscript 0 ≤ i reminds the additional condition “P(i−1)(ω)
exists”, when 1 ≤ i. For example, KP is KP0

1 ; KP+ Infinity is KP1
1 (and can be

interpreted in the realm of second-order arithmetic) ; a model of KP0
n is a n-admissible

set, etc. With the theories, KP2
n, we enter the realm of third-order arithmetic. For a
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more precise study and axiomatisation of third-order arithmetic, in the continuation of
Z2, one can consult [19].

For the proof, we will proceed to build up a game in 2<ω with a (Π0
4)n winning condition.

However, to keep the way we describe the game the most positive and intuitive possible,
we will describe this winning condition by its complementary, that is, n Σ0

4 conditions
ϕi=0,...,n−1 which will lead to the victory of player I if and only if the smallest i such
that ϕi doesn’t hold is even (keep in mind we add the condition ϕn(m) ≡ m ̸= m at the
end). Otherwise player II wins. Since player I’s goal is that the first condition to fail is
even, we will stack in even conditions what we will call the CIIi’s, that is what player
II should play to avoid losing. Similarly, the CIi’s will appear in odd conditions, to be
satisfied by I(at least before the failure of an even condition). We follow as a guide, the
proof of theorem 3.2.3 from [38].

The model that will witness the failure of (Π0
4)m−1 determinacy is a (the unique) well-

founded one of the theory

T 1
n := KP2

n + V = L+ ∀α ∈ Ord(Lα is not a model of KP2
n).

The later model is of course Lα1
n
, where α1

n is the smallest ordinal α such that Lα is a
model of KP2

n.

We begin to define the first conditions CI0 and CII0.

(CI0) : MI |= T 1
n ∧ MI is an ω-model ∧ P1(RMI) ̸⊆ P1(RMII).

(CII0) : MII |= T 1
n ∧ MII is an ω-model ∧ P1(RMII) ̸⊆ P1(RMI).

By the construction of the difference hierarchy, since we are looking for the first condition
to fail (and we will see at the end that all can’t hold), we will suppose when stating
later conditions that the preceding ones are all satisfied so far. In particular, from now
on both term models can’t be well-founded since the only well-founded ω-model of T 1

n

is Lα1
n
.

The conditions we want now to define have the purpose to detect which player played
the theory of an ill-founded model to make it lose. Since the best chance for a player
to win is then to play the theory of Lα1

n
, we will suppose that one of the models is

well-founded, and call it M, and then that the other is ill-founded, and denote it by
N .

We define the larger common segment (identifying it to the actual isomorphism between
them), that is, the well-founded part of N , as follows. First we define its second order
version, for x0 ∈ RM and y0 ∈ RN ,

(x0, y0) ∈ A0 ↔ ∀n ∈ ω(M |= n ∈ x0 ↔ N |= n ∈ y0).
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Now let us move on to the third-order common part, with a first attempt at a definition
that we will have to sharpen later.

(z, w) ∈ A1 ↔∃x1 ∈ P1(RMI), y1 ∈ P1(RMII) (MI |= x1 codes z ∧ MII |= y1 codes w∧
∀x0, (x0, y0) ∈ A0 → (MI |= x0 ∈ x1 ↔ MII |= y0 ∈ y1)). (3.4)

which is a Σ0
3 set. Nevertheless, if M and N don’t have the same reals it could be that

some elements of A1 aren’t actually the same set of real numbers. To avoid that, we
could add conditions like

∀x0 ∈ RMI(MI |= x0 ∈ x1) → ∃y0 (x0, y0) ∈ A0.

However, this would increase the complexity of A1 to the one of a Σ0
4 set. Instead, we

will add preliminary conditions CI1 and CII1 that will allow us to redefine accurately
the third-order common part.

On the other hand, the point of defining the following conditions will be to force each
player to exhibit more and more of their respective unique elements and check that
these do not form a descending sequence, proving the model to be ill-founded. Along
the way we want to show that these conditions imply Lα, the well-founded part of N ,
to be a model of KP2

i for i ≤ n so that all conditions cannot be satisfied (by definition
of α1

n). For that to work, we need to ensure that so far Lα, the common well-founded
part, is a model of “P(ω) exists”. To do that we will need a result like the one in [17],
characterising constructible ill-founded models of set theory. We cite it briefly because
its proof requires notions we didn’t introduce in the present study.

Lemma 3.2.5 (Overspill). Let N be an ω-model of V = L and suppose N is ill-founded
with wfo(N ) = α and that κ ∈ Lα is the largest cardinal of Lα. Say X ∈ N is a non-
standard code if X ⊆ κ codes a linear order of κ so that N has an isomorphism from X
onto some non-standard ordinal of N . Then,

{X ∈ N \ Lα | X is a non-standard code }

is non-empty, and has no <N
L -least element.

Thus, by requiring that this set, for κ = ω, is either empty or has a <N
L -least element, we

have that κ cannot be the greatest cardinal of Lβ. From there, since we have a cardinal
ω1 in Lα, we can show that the collection of the set of natural numbers of Lα is a set
of Lα and this way that it is a model of “P(ω) exists”. However, since we don’t know
which one of the player play the ill-founded model, we have to state the condition in
both models to ensure this fact.
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(CI1) : P1(ω)MI \ P1(ω)MII ̸= ∅ → P1(ω)MI \ P1(ω)MII has a <MI
L -least element.

(CII1) : P1(ω)MII \ P1(ω)MI ̸= ∅ → P1(ω)MII \ P1(ω)MI has a <MII
II -least element.

In his proof of theorem 3.2.2, Hachtman proves that these are Σ0
4 conditions. While in

his case it was used to detect which of the model was ill-founded, since, provably in the
model, everything was countable, it simply tells us that the descending sequence of N
cannot be too simple. So as soon as both (CI0), (CI1) and (CII0), (CII1) are satisfied, Lα
is a model of “P(ω) exists”.

What is more, we can now better handle the situation where M and N don’t have the
same reals. There are four cases:

1. If P1(ω)MI = P1(ω)MII (a Π0
3 condition), we define A1 as in 3.4;

2. If P1(ω)MI ⊊ P1(ω)MII (a ∆0
4 condition), then we know by condition (CII1) that

there exists a <MII
L -least element of P1(ω)MII \ P1(ω)MI and thus a least δ such

that LMII
δ contains that element. Then we define A1 as in 3.4 but with LMII

δ

instead of P1(RMII);

3. The case P1(ω)MII ⊊ P1(ω)MI is similar to the preceding one;

4. If P1(ω)MI ̸⊆ P1(ω)MII and P1(ω)MII ̸⊆ P1(ω)MI (a Σ0
3 condition), then we have

minimal δ1 and δ2 such that all the reals defined below them in the constructible
hierarchy are common to both model. Then we define A1 as in 3.4 but with LMI

δ1

and LMII
δ2 instead of P1(RMI) and P1(RMII) respectively.

In all cases, the definition of A1 will remain Σ0
3. Since the remaining conditions will

always make use of A1, we will write C::k (for 2 ≤ k ≤ n − 1) as one condition de-
pending of A1, but it is actually a conjunction of four conditions “Hi → C::k(A1

i )”,
with i ∈ {1, 2, 3, 4} for the four cases, denoted by Hi. Then we see that if C::k is Σ0

4,
the whole conjunction is still Σ0

4. For instance in H2 we would have the ∆0
4 condition

plus

∃δ ∀(γ < δ) ∀a ∈ P1(ω)MII
(a ∈ LMII

γ → ∃b (a, b) ∈ A0),

which is Σ0
4, but we will have to put “∃δ” in front of the implication “H2 → C::k(A1

2)”
since A1

2 depends of it, thus making of the whole condition a Σ0
4 sentence if C::k(A1

2) is
too.

The picture 3.2 depicts the situation we have so far, with A1 coding the well-founded
part of N , Lα for some wfo(N ) := α.
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M = Lα1
n

Lα A1

N

Figure 3.2: A typical situation in the game of KP2
n

We start our stalking of the ill-founded structure by sounding the unique respective Σ1-
definable subsets of each model. To this aim, we define the following set.

W 1
MI,1 = {β ∈ OrdMI | ∃(x1, x2) ∈ A1,ϕ ∈ ∆0, [(∃z ∈ LMI

β MI |= ϕ(z, x1))∧
(MII |= ¬∃yϕ(y, x2))]}.

W 1
MII,1 is defined mutatis mutandis. The next conditions are then

(CI2) : W 1
MI,1 has a least element or is empty.

(CII2) : W 1
MII,1 has a least element or is empty.

This condition says that ∃β(β ∈ W 1
M:: ∧∀γ < β(γ ̸∈ C1

M::)). Since W 1
M::,1 is Σ0

3, it is a Σ0
4

condition. Now comes a key fact that will start our inductive search for the ill-founded
model.

Lemma 3.2.6. Suppose conditions C::i to be satisfied for i = 0, 1, 2. Then there is a
β ∈ OrdN \ A1 such that A1 ⪯1 L

N
β .

Proof. Suppose for a contradiction that for every γ ∈ OrdN \ A1, there is a Σ1 formula
with parameters in A1 true in Lγ but not in A1. By hypothesis, W 1

N ,1 has a least element
δ. By definition of W 1

N ,1, we have δ ̸∈ A1. Since from this point we suppose N to be
ill-founded let

δ > γ0 > γ1 > γ2 > · · ·

be a descending sequence in OrdN \A1, converging down to the cut (OrdA1
, OrdN \A∞).

By our absurd assumption, for each i, there is a ∆0 formula ϕi with parameters in A1

and a <L-least witness zi ∈ Lγi
such that

N |= ϕi(zi) but A1 |= ¬∃yϕi(y).

76



By thinning out our sequence if necessary, we may assume that zi ̸∈ Lγi+1 so that
zi : i < ω is an <N

L -descending sequence. Since we assumed by our absurd hypothesis
that δ was the least element of W 1

N ,1, for all i,

M |= ∃yϕi(y).

Let yi be the<M
L -least such witnesses. Since M is well-founded, the sequence {yi : i < ω}

cannot be an <M
L -descending sequence. So there exist two index i < j such that

zj <
N
L zi but yi <

M
L yj.

Therefore, Lγj+1 is a witness in Lγj
for the ∆0 formula

ψ(x) ≡ ∃(z ∈ x) ϕj(z) ∧ ∀(z ∈ x) ¬ϕi(z),

that is true in N but not in M where we have yi <M
L yj. This however shows that γj+1

is an element of W 1
N ,1, a contradiction.

The goal now is to define the remaining conditions such that if all the conditions C::i
for i = 0, 1, . . . k hold, then A1 codes an initial segment satisfying KP2

k. However, by
definition of T 1

n , such a (strict) initial segment can’t be a model of KP2
n and thus one of

the conditions we are about to define is doomed to fail. We will prove this by induction
and to perform this we need the following induction hypothesis. We want ∧k

i=0C::i to
imply the existence of β1 and β2 such that

(⋆k)(β1, β2) : β1 ∈ OrdMI \ A1
I ∧ MI |= Lβ1 satisfies KP2

k−1∧
β2 ∈ OrdMII \ A1

II ∧ MII |= Lβ2 satisfies KP2
k−1∧

LMI
β1 ≡k,A LMII

β2 ,

where ≡k,A1 is written for Σk elementary equivalence, with parameters from A1 and z ∈
A1
I ↔ ∃w (z, w) ∈ A1

I , a Σ0
3 property. By lemma 3.2.6, we know that so far, such a pair of

ordinals of the respective models satisfying (⋆1) exists. Indeed, we can take β1 = α ∈ M
(from Lα) and β2 = β ∈ N (given by the lemma). For the sake of definiteness, we will
always assume that player I is playing the well-founded model. What is more, the above
property (⋆k) is Π0

3, the most complex property being “β1 ̸∈ A1
I ”.

Definition 3.2.7 (Sk formulae). A formula of second-order arithmetic is said to be Sk
if it is a Boolean combination of formulae of the form (∀x ∈ z) ψ(x, ȳ) where ȳ are free
variables and ψ is Σk.

Lemma 3.2.8. If LMI
β1 ≡k,A1 LMII

β2 , then LMI
β1 and LMII

β2 satisfies the same Sk-sentences
with parameters from A1 substituted for the free variables z and ȳ.
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Proof. This is because A1 is transitive since then, given a formula of the form (∀x ∈
z) ψ(x, ȳ) and z, ȳ ∈ A1 for any x ∈ z, the sentence ψ(x, ȳ) is Σk with parameters from
A1. Then by definition of “|=” the claim follows easily.

We are ready to move on and dive into the definitions of the generalized versions of the
sets W 1

M::,1. This time we search for non-standard Σk-definable subsets of each model
(1 < k). Once again, either they are a lot of such elements, witnessing an infinite
descending sequence and thus betraying the identity of the ill-founded model, or their
rarity implies the existence of ordinals satisfying (⋆k).

W 1;β1,β2
MI,k

= {β ∈ β1 | ∃(x1, x2) ∈ A1,ϕ ∈ Sk−1, [(∃z ∈ LMI
β LMI

β1 |= ϕ(z, x1))∧
(LMII

β1 |= ¬∃yϕ(y, x2))]},

and W 1;β1,β2
MII,k

is defined mutatis mutandis. As before, these sets are Σ0
3. Now let us define

the remaining conditions involved in determining the winner of the game (as before we
treat indexes k > 1).

(CI(1 + k)) : There exist β1, β2 such that (⋆k−1)(β1, β2)
∧W 1;β1,β2

MI,k
has a least element or is empty.

(CII(1 + k)) : There exist β1, β2 such that (⋆k−1)(β1, β2)
∧W 1;β1,β2

MII,k
has a least element or is empty.

By inspection of the alternation of quantifiers highlighted in the preceding definitions,
these last conditions are Σ0

4.

Lemma 3.2.9. Suppose that β1, β2 satisfy (⋆k). Then

1. Lα ⪯k Lβ1 and A1 ⪯k Lβ2;

2. Lα |= KP2
k+1;

3. There exists a descending sequence of N -ordinals γ converging down to OrdA1 such
that Lγ ⪯k Lβ2.

Proof. First, we claim that α is not Σk definable in Lβ1 , with parameters from Lα. Since
α ∈ M |= T 1

n , it follows that α is not n-admissible and by lemma 2.2.9, every β ∈ M
is of cardinality at most P(ω). Thus there is a Σn definable map on Lα from P(ω)
onto α, eventually with parameters. This defines in Lα a Σn well ordering of P(ω) of
order type α. This ordering cannot belong to N as it would define its well-ordered part.
By our absurd hypothesis, in Lβ1 , we have a Σk definition of this ordering using the Σk

definition of α and bounded quantification over Lα. However then, since LMI
β1 ≡k,A1 LMII

β2 ,
this ordering is now definable in Lβ2 and hence belongs to N , a contradiction.
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For point 1 it is of course sufficient to show Lα ⪯k Lβ1 since the other is Σk elementary
equivalent to it, over A1. Since β1 is (k− 1)-admissible, from lemma 2.2.6 we know that
Lβ1 has a parameterless Σk Skolem function. Let thus be H, the Σk-Skolem hull of Lα
in Lβ1 . We show that H = Lα, which will prove our claim. Suppose otherwise towards
a contradiction and consider Lγ, the Mostowski collapse of H (see theorem 2.1.6), with
α < γ ≤ β1. Let α′ be the ordinal of H being sent to α ∈ Lγ by the collapse. By
construction of H, we would have a Σk definition of α in Lγ, with still parameters from
Lα, since the collapse is the identity over Lα. However since

LM
γ ≡k,A1 H ≡k,A1 LM

β1 ,

α would be Σk definable in LM
β1 , a contradiction.

Next concerning point 2, let us, as usual, suppose that our claim is false and thus α is
not k+ 1-admissible and so there is a Πk definable map on Lα from P(ω) onto α. Since
A ⪯k Lβ2 , as for our first observation, we would have that N would be able to define its
well-founded part and a contradiction would occur.

Finally about point 3, we use theorem 2.1.8 to get from the freshly proved (k + 1)-
admissibility of α, the existence of an unbounded infinity of γ < α such that Lγ ⪯k

Lα ⪯k Lβ2 . The set of the γ < β2 such that Lγ ⪯k Lβ2 is on the other hand definable
in N . So now if for some δ ∈ OrdN \ A1 this set had supremum α, then α would
be definable in N and we know it is not. So for every δ ∈ OrdN \ A1, there exists
δ > γ ∈ OrdN \ A1 such that Lδ ⪯k Lβ2 .

Lemma 3.2.10. If there is a play of our game such that, for all i ≤ 1 + k, the resulting
real satisfy all the conditions (CIi) and (CIIi) for all 0 ≤ i ≤ 1 + k, then there are β1
and β2 satisfying (⋆k).

Proof. Let us prove our claim by induction, lemma 3.2.6 giving us the base step. Assume
there exist some fixed β1 and β2 satisfying ⋆k−1.

Firstly we claim that no ordinal δ ∈ W 1;β1,β2
N ,k is in A1. Let δ ∈ A1, any Sk−1 formula

∀(x ∈ z)ϕ(z, ȳ) and z2, ȳ2 ∈ LN
δ ⊆ A such that LN

β2 |= ∀(x ∈ z2)ϕ(z2, ȳ2). By induction
hypothesis, it follows that LN

β2 |= ∀(x ∈ z1)ϕ(z1, ȳ1) too, with z1 and ȳ1 the images of z2

and ȳ2 in M (via the isomorphism A1). Thus δ ̸∈ W 1;β1,β2
N ,k .

Now, by hypothesis, W 1;β1,β2
N ,k has a least element δ, necessarily not in A1. Also by clause

3 of lemma 3.2.9, there is a descending sequence

δ > γ0 > γ1 > γ2 > . . .

in OrdN converging down to α = OrdN , such that, for each i < ω, LN
γi

⪯k−1 L
N
β2 . Now

we argue exactly like lemma 3.2.6 (where we had k = 1 and ⪯0 is absoluteness for ∆0
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formula, which follows from the transitivity of the structures) to get that for some i < ω,

Lα ⪯k L
N
γi

⪯k−1 L
N
β2 .

Finally we conclude by lemma 2.2.8 that LN
γi

is (k − 1)-admissible as LN
β2 is (k − 2)-

admissible by induction hypothesis while α is (even) Σk admissible by lemma 3.2.9, so
that ⋆k(α, γi), as required.

Before putting our game under its final presentation (a (Π0
4)n game), we prove that the

(Π0
4)2n+2 game G′1

n , whose payoff set is described by the sequence

(CII0), (CI0), (CII1), (CI1), . . . , (CII(1 + k)), (CI(1 + k)), . . . , (CIIn), (CIn),

satisfy a behaviour analogous to the one defined in the proof of theorem 3.2.3.

Lemma 3.2.11. The game G′1
n we just defined satisfy:

1. If player I plays the theory of Lα1
n
, she wins;

2. If player I does not play the theory of Lα1
n

but player II does, then player II wins.

Proof. Taking the model produced by the theory of Lα1
n
, since OrdA = α ∈ M |=

Th(Lα1
n
), α cannot be n-admissible (we can suppose CII0, 1 didn’t failed already). So

by lemmas 3.2.10 and 3.2.9, there is a k < n such that either CI(1 + k) or CII(1 + k)
fails. Suppose CII(1 + k) is the first condition to fail and that I wins the game. Since
∀i < 1 + k, all the conditions C::(i) are satisfied, this failure means that MII is ill-
founded. An analogous argument works when CI(1 + k) is the first condition to fail and
II thus wins the game.

Now we will modify the game, in order to still satisfy lemma 3.2.11, but with a (Π0
4)n−1

game that we will call G1
n. The first real restriction is that we need to check both

(CI0), (CI1) and (CII0), (CII1) before to begin with the rest of the conditions if we want
our game to work as intended. The other one is that we must place the conditions
(C::(k + 2)) after both conditions (C::(k + 1)), since we are only interested in the first
condition to fail, it means that the preceding ones hold; what we need for the (C::(k+1))
to work as intended. Otherwise, a condition (C::(k+ 2)) could fail for the player playing
the well-founded model, just because the condition (C::(k + 1)) did not hold for the
player playing the ill-founded model, but we did not check it earlier. On the other hand,
since only the player playing N can lose by such a condition, the order of (CI(k + 2))
and CII(k + 2) does not matter.

From these observations, the (Π0
4)n game G1

n is defined by the condition depicted on
figure 3.3.
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Even: (CII0, 1) (CII2, 3) (CIIn)
· · ·

Odd: (CI0, 1, 2) (CI3, 4)

Figure 3.3: The game G1
n for n even.

Proof of theorem 3.2.4. The proof is the same as the one of theorem 3.2.3, taking the
game defined above, G1

n that satisfies lemma 3.2.11.

We see that now that we have overcome the first “uncountable” case, we can generalize
the proof by replacing the emphasised index “1” with “1 ≤ i − 1 < ω”. The generali-
sation of A1 need to be somehow cautious since the number of cases will increase when
determining the common well-founded part but we will get Σ0

3+i conditions, because
of the higher imbrication of quantifiers coming from the higher order type of the ob-
jects, and be dealing with theories including KPin. This allows us to state the following
theorem.

Theorem 3.2.12. For all 2 ≤ i, n < ω,

KPin := KP + “P i−1(ω) exists” + ∆n−1 collection + Σn−1 separation ̸⊢ (Π0
2+i)n-Det.

Furthermore, by theorem 2.2.7, we also get for free from the proof that even reinforcing
our theory with ∆n Separation is not sufficient to prove (Π0

2+i)n-Det.
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Conclusion

At the beginning of this thesis, we were wondering what was the strength of determinacy
axioms in the context of Gale-Stewart games with Borel payoff (Π0

n)m (3 ≤ n,m−2 < ω).
It was already known from the result of Martin [35] that this was a list of theorems
that were unsolvable without sufficient iteration of the power set axioms at disposal
because of how quickly the complexity of the winning strategies of such games grow. The
paper of Montalbán and Shore [38] was also telling us that the hierarchy of differences
(Π0

3)m was growing very quickly in terms of logical requirements for the existence of
winning strategies in games of such payoff set, from Π1

2 comprehension to the very top
of the subsystems of Z2. Along the way, this gives us many other examples of Gödel’s
incompleteness theorem, way before the very powerful theory ZFC.

From the first preliminary chapter of the present thesis to the end, we introduced de-
terminacy and reverse mathematics and presented, in the absence of precise reverse
mathematics reversals, a narrow gap for (Π0

3)m-Det giving us a taste of the reverse
mathematics method. We also presented a very central method in the field, of inter-
pretations back and forth between second-order arithmetic and some fragments of set
theory, starting from ATR0. This allowed us to enrich a lot our analysis of determinacy
axioms for these payoff sets. Not only that but by implementing set theory tools in
second-order arithmetic, especially constructibility and admissible sets of Barwise [3]
and Devlin [10], we developed crucial conservation results and better bounds (the one
presented in [38]) for the determinacy of differences. We finally exposed the way the
second theorem of Montalbán and Shore could be generalised with the same theories of
Kripke-Platek as the ones modelling subsystems of second-order arithmetic but with the
existence of higher type objects.

Determinacy is a very wild subject for reverse mathematics however, as it can be
strengthened or weakened in various ways like modifying the length of the trees in
the games, the space in which we play the moves or the complexity of the payoff sets.
Before all, the next step of this thesis is to generalise the first theorem of [38]. Be-
yond these theorems of Montalbán and Shore, many questions remain, such as the
precise strength of (Π0

3)m-Det and others, as Hachtman proves for the levels of the Borel
Hierarchy of the form Σ0

1+α+3 in [17]. Other directions are studying determinacy in
third-order arithmetic, since games with moves from the real numbers can be described
within it, as it is discussed in [19], or even determinacy as independent questions from
ZFC and their links with large cardinals, sharps, mice, etc, which we can learn about
in [25,35].
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