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Introduction

In 1900, the mathematician D.Hilbert, on his famous list of problems,
asked whether every continuous group of transformations of a finite dimen-
sional real or complex space is a Lie group. A couple of decades later,
O.Schreier defined topological groups, abstracting the implicit idea, already
present in S.Lie’s work, of continuous groups of infinitesimal transforma-
tions. A new formulation of Hilbert’s question then arose: which topological
conditions on a topological group will ensure that it has a structure which
makes it a Lie group? It was answered in 1952 by A.Gleason, D.Montgomery
and L.Zippin: a topological group is a Lie group if and only if it is locally
Euclidean, namely if and only if it is locally compact and has no small sub-
groups (i.e. there is a neighborhood of the identity containing no non-trivial
subgroup). These two answers are now considered as the most common ver-
sions of Hilbert’s fifth problem (H5).

As the structure of a Lie group is local, a local version of Hilbert’s fifth
problem (local H5) came naturally: is every locally Euclidean local group
locally isomorphic to a Lie group? A local group being, roughly speaking, a
Hausdorff topological space with an identity element, and continuous inverse
and multiplication maps that are not defined everywhere, and in which an
associativity law, called local, holds for products of three elements. How-
ever, associativity in local groups does not necessarily hold for products of
more than four elements, unless these elements are sufficiently close to the
identity: for instance, given elements x, y, u, v of a local group G, products
such as (x(yu))v and (xy)(uv) may be defined but not equal. We will give
precise definitions of local groups and of a global associativity law for local
groups in Chapter 1.

In 1957, R.Jacoby proposed an affirmative answer to local H5 in [10],
but one of the theorems on which the solution relied was false: as noticed
by C.Plaut in [17], and further developped by P.Olver in [14], it did not
make a distinction between local and global associativity.

Meanwhile, in 1934, T.Skolem constructed the first nonstandard models
of Arithmetic, using model-theoretic techniques. In 1961, a similar construc-
tion was used by A.Robinson (see for example [19]) to construct nonstandard
real numbers (or more generally nonstandard topological spaces), in which
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8 INTRODUCTION

there are infinitesimal and infinite elements. This allowed to formalize con-
cepts from the 17th century, that were not used any longer because of their
lack of precision. As H5 involves limits and asymptotic behaviours, non-
standard analysis appeared to be a quite appropriate framework: in 1990,
J.Hirschfeld used it in [7], in order to give a simplified proof of H5.

I.Goldbring, in [5], in 2010, instead of fixing Jacoby’s proof, chose to
adapt Hirschfeld’s proof to local H5. Working with local groups, one is
brought to consider classes of restrictions of them to given neighborhoods of
the identity. Nonstandard methods allow to consider a set of infinitesimal
elements instead, which is actually a genuine group. Hence, most of the
proof of H5 goes through in the local case. I.Goldbring consequently follows
Hirschfeld’s proof, by first showing that every locally compact local group
with no small subgroups (NSS) has a restriction which is a local Lie group,
and then by showing that every locally Euclidean local group is NSS.

Our work consists in first developping the nonstandard setting used in
Goldbring’s proof of local H5, and then in giving a detailed account of his
proof that the set L(G) of equivalence classes of some local 1-parameter
subgroups can be equipped with an abelian group law. From this, it is not
too difficult to show that L(G) is a locally compact real vector space, hence
a finite dimensional real vector space, by a theorem of Riesz.

In Chapter 1, we define local groups and state local H5, with a special
care given to the two different notions of associativity, and how they are
linked to local H5.

In Chapter 2, we study the model-theoretic constructions underlying a
nonstandard setting with [3] C.C.Chang et H.J.Keisler Model Theory, tak-
ing the ultraproduct approach. Some combinatorial properties of ultrafilters
allow to construct ultraproducts in which, for some cardinal κ, every inter-
section of κ definable sets is nonempty provided that every finite intersection
of them is nonempty. Such a structure is called κ+-saturated.

In Chapter 3, starting from a local group G and from a base B for its
topology, we expand the group language adding a unary predicate for each
element of B. We then consider a |B|+-saturated ultrapower G∗ of G. The
infinitesimal elements in G∗ (i.e. the elements lying in all neighborhoods of
the identity) form a group µ, that is used to construct a kind of ’dictionnary’
expressing properties of G within G∗.

In Chapters 4 and 5, following I.Goldbring, we see how to construct local
1-parameter subgroups (local 1-ps) from a certain kind of infinitesimals: an
idea underlying the proofs of Goldbring and Hirschfeld is, roughly speaking,
kind of cutting the group µ into ’slices’, with the help of normal subgroups
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of µ corresponding to different ways the powers of these infinitesimal ele-
ments can grow. By taking a quotient, it is possible to get an intermediate
’slice’ corresponding to infinitesimals the powers of which grow neither too
fast nor too slow.

In Chapter 6, we see the local adaptation of some important techni-
cal lemmas of H5, namely the Gleason-Yamabe Lemmas. To each compact
neighborhood of the identity with certain properties, a continuous function
is associated. Then, linking G to the set C of continuous functions from G
to R with compact support, the Haar measure is defined. Then properties of
||af − f ||, where a belongs to a neighborhood of the identity in G and f is a
particular function that belongs to C, are shown in order to get information
about a.

In the last Chapter, we study a nonstandard version of the Gleason-
Yamabe Lemmas, relative to a set Q ⊆ µ. Then we prove that it is possible
to endow L(G) with the structure of an abelian group by showing that a
quotient (corresponding to the ’good slice’ of infinitesimals previously men-
tioned) is abelian. This is were we end our partial exposition of local H5.
Nevertheless, we try to give a sketch of the remaining points to be dealt
with in order to complete the proof.





CHAPTER 1

The local Hilbert’s fifth problem

Section mainly based on [5], [14], but also on [22] and [13] and [23].

1. Preliminaries

Let (X, τ) be a topological space. We first recall some separation axioms;
proofs of the propositions and remarks can be found in [1] or in [23].

Definition 1.1. Let (X, τ) be a topological space.

• (T0) (X, τ) is T0 iff given two distinct points x, y ∈ X, there is a
neighborhood of one of them not containing the other.
• (T1) (X, τ) is T1 iff given two distinct points x, y ∈ X, there is a

neighborhood of each not containing the other.
• (T2) (X, τ) is T2 (or equivalently Hausdorff or separated) iff given

two distinct points x, y ∈ X, there is a neighborhood Vx of x and a
neighbourhood Vy of y such that Vx ∩ Vy = ∅.
• (regular) (X, τ) is regular iff whenever A is closed in X and x /∈ A,

then there are disjoint open sets Ux and VA such that x ∈ Ux and
A ⊆ VA.
• (completely regular) (X, τ) is completely regular iff whenever A

is closed in X and x /∈ A, then there is a continuous function
f : X → [0, 1] such that f(x) = 0 and f(A) = 1.
• (normal) (X, τ) is a normal space iff whenever A and B are closed

disjoint subsets of X, then there are disjoint open sets OA and OB
such that A ⊆ OA and B ⊆ OB.
• (T3) (X, τ) is T3 iff it is T1 and regular.
• (T31/2) (X, τ) is T31/2 (or equivalently Tychonoff) iff it is T1 and

completely regular.
• (T4) (X, τ) is T4 iff it is T1 and normal.

Proposition 1.2. (X, τ) is regular iff for all x ∈ X the set of neighbor-
hoods of x has a base of closed sets iff whenever U is open in X and x ∈ U ,
there is an open set V such that x ∈ V and the closure of V is included in
U .

Lemma 1.3 (Urysohn Lemma). Let A and B be closed disjoint subsets
of a normal topological space X. Then there exists a continuous function
f : X → [0; 1] ⊆ R such that for all x ∈ A, f(x) = 0 and for all x ∈ B,
f(x) = 1.

11



12 1. THE LOCAL HILBERT’S FIFTH PROBLEM

We have that T4 ⇒ T31/2 ⇒ T3 ⇒ T2 ⇒ T1 ⇒ T0.
A compact topological space is normal. A topological space which is

locally compact and T2 is Tychonoff and consequently completely regular.

Definition 1.4 (separable). (X, τ) is separable if there is a subset
A ⊆ X, such that A is finite or countable, and such that the closure of A is
X.

Note that if X is separable, a subspace of X is not necessarily separable.
If there exists a countable basis for the topology τ , X is then separable. The
other implication is not true, except if one adds the assumption for X to be
also metrizable.

Definition 1.5. G := (G, 1, .,−1 ) is a topological group if it is a group
and if it is equipped with a topology τ ⊆ P(G) for which the group operations
.,−1 are continuous.

Any group can be made into a topological group by putting on it the
discrete or the indiscrete topology.

Proposition 1.6. Topological groups are completely regular.

Proof. See [13] �

In the literature topological groups are generally supposed to be T2 ;
in fact it is easy to see that when they are T0 they become automatically
T2 (and thus even Tychonoff because they are completely regular). It is
also possible to reduce the study of topological groups to the study of T2
topological groups, by pointing out that :

• A subgroup H of a topological group is itself topological when given
the induced topology. The closure of H is still a subgroup. If H is
normal in G, the closure of H is also normal.
• If H is a subgroup of G, the set of left cosets G/H (i.e. the quotient

of G by the equivalence relation x−1y ∈ H) is a topological space
when given the quotient topology.
If H is normal, then G/H with the quotient topology is a topolog-
ical group.
If H is closed, then G/H is T2. If not, G/H will not be T0.
• G is T2 iff {1} is closed in G.

As the closure of {1} is always a closed normal subgroup H of
G,the study of G can be reduced to the one of a T2 topological
group, namely G/H.

We now state some basic properties about the topological structure of
a topological group. Proofs can be found in [1] or [13]. Anyway, most of
these proofs will be seen later on, in the more general case of local groups.

Let g ∈ G and V be an open set containing 1. Then gV and V g are
open sets containing g.
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This can also be expressed by saying that the left and right translations
from G to G, namely Lg and Rg, are continuous (in fact they are homeo-
morphisms).
The topology on G is thus determined by the topology near the identity, or,
equivalently, by the neighborhoods of 1.
Note also that an open subgroup H of G is closed (as G/H is a union of
cosets of H, since the set of orbits of the action of H on G is a partition of
G) ; hence if G is compact every open subgroup has finite index ; and that
if V is an open set of G, then so is V −1 := {v−1 : v ∈ V }. A set V is called
symmetric if V = V −1.

Proposition 1.7. Let V be an open neighborhood of 1. Then there exists
a symmetric open neighborhood W of 1 such that W.W ⊆ V .

Proposition 1.8. Let G be a topological group,1 its identity element.
Let U be a neighborhood of 1. If G is connected, the subgroup generated by
U is G.

Definition 1.9. Let M be a topological space.

• A local map of dimension n for M is a pair (U, φ) where U is an
open set of M and φ : U → φ(U) ⊆ Rn is a homeomorphism.
• An atlas A of dimension n for M is a collection

A = {(Ui, φi) : i ∈ I}
where I is a set, and where the pairs (Ui, φi) are local maps of
dimension n for M , such that M =

⋃
i∈I Ui.

• M is said to be locally euclidean if it is equipped with an atlas of
dimension n for some n.
• An atlas A is smooth (or equivalently Cω) if for all i, j ∈ I such

that Ui ∩ Uj 6= ∅, the map

φi ◦ φ−1j : φj(Ui ∩ Uj) ⊆ Rn → φi(Ui ∩ Uj) ⊆ Rn

is smooth (or equivalently differentiable or Cω).
• M is said to be a smooth manifold (of dimension n) if M is
T2, if its topology has a countable basis, and if it is equipped with a
maximal smooth atlas (of dimension n).

Note that if M is locally euclidean, it is locally compact.
If M is a smooth manifold with atlas A = {(Ui, φi) : i ∈ I}, M ×M is also
a smooth manifold with atlas B := {(Ui × Uj , φi × φj) : (i, j) ∈ I × I}.

Definition 1.10. Let M,N be smooth manifolds, and f : M → N an
application.

• Let p ∈M . We say that f is smooth at p if there exists a local map
(U, φ) such that p ∈ U and a map (V, ψ) such that f(U) ⊆ V and
ψ ◦ f ◦ φ−1 : φ(U)→ ψ(V ) is smooth at φ(p).
• We say that f is smooth if f is smooth at every p ∈M .



14 1. THE LOCAL HILBERT’S FIFTH PROBLEM

Definition 1.11. A group G is a Lie group if it is also a smooth
manifold and if the group operations . : G × G → G and −1 : G → G are
smooth.

For instance, Rn equipped with addition is a Lie group, as well as
GL(n,R), the set of n × n matrix with real coefficients and determinant
different from 0, equipped with multiplication.

Lie groups are T2 as smooth manifolds, so we are interested in T2, or T0
topological groups, and in T2 topological spaces.

2. Local groups

Let G be a topological group, and let V be a neighborhood of the identity
in G, to which we look as a space with the induced topology. Let x, y ∈ V .
The product xy and the inverse element x−1 do not necessarily lie in V .
This kind of structure is in fact a generalisation of the one of topological
groups. We define it below:

Definition 1.12. A local group is a 4-tuple (G, 1, ι, p) where G is a
T2 topological space with a distinguished element 1 ∈ G, and ι : Λ→ G (the
inversion map) and p : Ω → G (the product map) are continuous functions
with open set Λ ⊆ G and open set Ω ⊆ G×G, such that 1 ∈ Λ, {1}×G ⊆ Ω,
G× {1} ⊆ Ω, and for all x, y, z ∈ G :

(i) p(1, x) = p(x, 1) = x
(ii) (local inverse) if x ∈ Λ, then (x, ι(x)) ∈ Ω, (ι(x), x) ∈ Ω and

p(x, ι(x)) = p(ι(x), x) = 1(2.1)

(iii) (local associativity) if (x, y), (y, z) ∈ Ω and (p(x, y), z), (x, p(y, z)) ∈
Ω, then

(2.2) p(p(x, y), z) = p(x, p(y, z))

We will often abuse notation and identify G and (G, 1, ι, p).

Definition 1.13. Let G = (G, 1, ι, p) and G′ = (G′, 1′, ι′, p′) be local
groups with domain(ι)= Λ, domain(p)= Ω, domain(ι′)= Λ′, domain(p′)=
Ω′. A morphism from G to G′ is a continuous function f : G → G′ such
that

(i) f(1) = 1′, f(Λ) ⊆ Λ′ and (f × f)(Ω) ⊆ Ω′

(ii) f(ι(x)) = ι′(f(x)) for x ∈ Λ, and
(iii) f(p(x, y)) = p′(f(x), f(y)) for (x, y) ∈ Ω

Lemma 1.14. (homogeneity) Let G be a local group such that Λ = G.

(i) For any g ∈ G, there are open neighborhoods V and W of 1 and g
respectively such that {g}×V ⊆ Ω, gV ⊆W , {ι(g)}×W ⊆ Ω, ι(g)W ⊆
V , and the maps

v 7→ p(g, v) : V →W and w 7→ p(ι(g), w) : W → V

are each other inverses (and hence homeomorphisms)
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(ii) G is locally compact iff there is a compact neighborhood of 1.

The proof of this lemma is not straightforward as it is the case for
topological groups.

Proof. (i)⇒ (ii) is clear, so we only need to prove (i).
Let g ∈ G and Ωg := {h ∈ G : (g, h) ∈ Ω}. Ωg is an open subset of G, as a
projection of the open subset Ω of G×G. The map

Lg :
Ωg → G
h 7→ p(g, h)

is continuous : let O be an open set containing p(g, h). As (g, h) ∈ Ω which
is open in the product topology, there are O1, O2 ⊆ G open and such that
(g, h) ∈ O1 × O2 ⊆ Ω. Moreover O2 ⊆ L−1g (O) := {h ∈ G : p(g, h) ∈ O},
hence L−1g (O) is open, so Lg is well continuous.

Now let V := L−1g (Ωι(g)). Note that V is included in Ωg by definition of the
map Lg. The set V is open by continuity of Lg, and 1 ∈ V since

V = {h ∈ G : (g, h) ∈ Ω and p(g, h) ∈ Ωι(g)}
= {h ∈ G : (g, h) ∈ Ω and (ι(g), p(g, h)) ∈ Ω}

Let W := Lg(V ). As W = Lg(L
−1
g (Ωι(g))), it is included in Ωι(g). The set

W is open because we also have W = L−1ι(g)(V ), so we can use the continuity

of Lι(g).
At the end, and because V ⊆ Ωg, W ⊆ Ωι(g), the products are defined and
we can see that Lg|V and Lι(g)|W are inverses of each other. �

Definition 1.15. A sublocal group of a local group G = (G, 1, ι, p) is
a set H ⊆ G containing 1 for which there exists an open neighborhood V of
1 in G such that

(i) H ⊆ V and H is closed in V
(ii) If x ∈ H ∩ Λ and ι(x) ∈ V , then ι(x) ∈ H

(iii) If (x, y) ∈ (H ×H) ∩ Ω and p(x, y) ∈ V , then p(x, y) ∈ H
With H and V as above, we call H a sublocal group of G with associated
neighborhood V .

Definition 1.16. A subgroup of a local group G = (G, 1, ι, p) is a
subset H ⊆ G such that 1 ∈ H, H ⊆ Λ, H ×H ⊆ Ω and for all x, y ∈ H,
ι(x) ∈ H and p(x, y) ∈ H.

Note that the subgroup H of Definition 1.16 is an actual group inside
the local group G.

Definition 1.17 (NSS, NSCS). A local group has no small subgroup
(respectively no small connected subgroup), if it contains a neighborhood of
the identity element which contains no non-trivial subgroup (resp. no non-
trivial connected subgroup). We will abbreviate it NSS (resp. NSCS).

Theorem 1.18. Every Lie group has no small subgroup.
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Proof. See for example [18] p.41. �

Definition 1.19. Let G = (G, 1, ι, p) be a local group.

(1) Let U be an open neighborhood of 1 in G. Then the restriction
of G to U is the local group G|U := (U, 1, ι|ΛU , p|ΩU ), where

ΛU := Λ ∩ U ∩ ι−1(U) and ΩU := Ω ∩ (U × U) ∩ p−1(U)

A restriction of G is a local group G|U where U is an open neigh-
borhood of 1 in G.

(2) G is globalizable if there is a topological group H and an open
neighborhood U of 1H in H such that G = H|U .

As written in [22], examples of local groups which are not globalizable
are easy to find, because global groups, and, hence, their restrictions, always
satisfy (with the convention that statements involving an undefined formula
are false):

(1) (cancellation law) ∀g∀h∀k(gk = hk ⇒ g = h)∧ (kg = kh⇒ g = h)
(2) (inversion law) ∀g∀h(gh)−1 = h−1g−1

(3) (involution law) ∀g(g−1)−1 = g

so it suffices to find a local group G = (G, 1,−1 , .) which does not obey one
of the above laws: in that case it cannot be the restriction of a global group.
The following example, from [14], involves a local group which cannot be
the restriction of a global group because it lacks a ”global” inversion law.

Example 1.20. Let G = R, and let the identity element be 0. The
formulas for the multiplication and inversion maps are defined as follows:

p(x, y) :=
2xy − x− y
xy − 1

ι(x) :=
x

2x− 1

We use

Λ := {x : x 6= 1/2, x 6= 1} ⊆ R

Ω := {(x, y) : |xy| 6= 1} ⊆ R× R
as the domains of definition of ι and p respectively.

However, in this situation, the group element 1 ∈ R plays a strange
role. We find p(x, 1) = p(1, x) = 1 for all x 6= 1. Moreover, its ’inverse’
ι(1) = 1 can even be defined, although the product of the two, p(1, ι(1)),
is not defined, and hence not equal to the identity. One can also note that
this infinite group element is ’inaccessible’, in the sense that it is not the
product of two elements different from itself, as p(x, y) = 1 iff either x = 1
or y = 1. In particular, the cancellation law is not satisfied.

Definition 1.21. Let G := (G, 1, p, ι) be a local group. G is a local Lie
group if G is a smooth manifold such that the maps ι and p are smooth.
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Back to Example 1.20, let U := {x : |x| < 1/2}. Then G|U is an abelian,
local Lie group, which can be globalized into the global Lie group (R,+, 0):
The map φ : G → R given by φ(x) = x/(x − 1) satisfies φ(p(x, y)) =
φ(x) + φ(y), and φ(ι(x)) = −φ(x) where defined. Therefore φ provides
the desired local group homeomorphism mapping G|U to the open interval
N = {−1 < x < 1/3} ⊆ R.

Theorem 1.22 (Cartan). Every local Lie group has a restriction which
is a restriction of a global Lie group.

3. Statement of the local H5

Now here are two forms of the local Hilbert’s fifth problem (H5)

Local H5-First Form : If G is a locally euclidean local group, then
some restriction of G is a local Lie group.

Local H5-Second Form : If G is a locally euclidean local group, then
some restriction of G is globalizable.

As explained in [5], the equivalence of the two forms can be seen in the
following manner : by Theorem 1.22, if G is a local Lie group, then some re-
striction of G is equal to some restriction of a Lie group. Thus the first form
implies the second form. Conversely, by the Montgomery-Zippin-Gleason
solution to the original H5, if U is open in G and such that G|U is global-
izable, the global group containing G|U will be locally euclidean and there
will be a smooth structure on it making it a Lie group. Then G|U will be a
local Lie group.

4. Associativity

From now on, products of two elements x, y are denoted x.y or xy, and
inverse x−1.

Definition 1.23. A local group G is globally associative, if, given
any finite sequence of elements from G, if there are two ways of introducing
parentheses such that both products thus formed exist, then the two products
are in fact equal. It is globally inversional if the inversion map is defined
everywhere, so that Λ = G.

A theorem of Mal’cev states that a (globally inversional) local group
is globalizable iff it is globally associative.

Jacoby, in [10], claims in his theorem 8 that every local group is glob-
ally associative, but in fact this is not always the case. Unfortunately the
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solution of local H5 was based on his theorem 8.

In paper [14], Olver constructs local Lie groups which are associative
up to sequences of length n for a given n but which are not associative for
sequences of length n+ 1.
The intuition that a local group can be viewed as an object that behaves
like a group near the identity, but for which the group laws can break down
once one moves far enough away from the identity, can be, and by the way
global associativity, formalized as follows : Let us say that a word g1 . . . gn
in a local group G is defined in G if every possible way of associating this
word using parentheses is well defined from applying the product operation:

Definition 1.24. Let a1, . . . , an, b ∈ G with n ≥ 1. We define the notion
(a1, . . . , an) represents b, denoted (a1, . . . , an) → b, by induction on n as
follows :

(i) (a1)→ b iff a1 = b

(ii) (a1, . . . , an+1) → b iff for every i ∈ {1, . . . , n}, there exists b
′
i, b
′′
i ∈ G

such that (a1, . . . , ai) → b
′
i, (ai+1, . . . , an+1) → b

′′
i , (b

′
i, b
′′
i ) ∈ Ω and

b
′
i.b
′′
i = b.

By convention, we say that (a1, . . . , an) represents 1 when n = 0.
We say that a1 . . . an is defined if there is b ∈ G such that (a1, . . . , an)
represents b ; in that case we write a1 . . . an for this (necessarily unique) b.

For instance, in order for abcd to be defined, ((ab)c)d, (a(bc))d,(ab)(cd),
a(b(cd)) and a((bc)d) must all be well defined.
As an example, within ({−9, . . . , 9}, 0,+,−), we have (−2 + 6) + 5 which is
defined, but −2 + (6 + 5) which is not defined.

Back to Example 1.20, we see that the products 1
2 ·

1
2 , 1

2 · 3 = 3 · 12 and
1
2 ·(

1
2 ·3), (12 ·

1
2) ·3 = 3 ·(12 ·

1
2) are all defined, and satisfy the local associative

law (2.2):
1

2
· (1

2
· 3) =

1

3
= (

1

2
· 1

2
) · 3

However, as 1
2 · 3 = −1, neither the products 3((12 ·

1
2)3), (3 · 12) · (12 · 3), nor

3(12(12 · 3)), etc... are defined.

Further with Example 1.20, one can consider a product involving 2, 3, 4, 5.
The products ((2.3)4)5, (2(3.4))5, (2.3)(4.5), 2(3(4.5)) and 2((3.4)5) are all
defined, but (2.3)(4.5) = 89

77 , while ((2.3)4)5 = 73
61 , hence 2.3.4.5 is not de-

fined.

The concept of relative closeness is thus useful.

Lemma 1.25. Let G be a local group. There are open symmetric neigh-
borhoods Un of 1 for n > 0 such that Un+1 ⊆ Un and for all (a1, . . . , an) ∈
U×nn , a1 . . . an is defined.



4. ASSOCIATIVITY 19

Proof. Let U ⊆ Λ be an open neighborhood of 1 in G. Then U∩U−1 =:
U1 is a symmetric open neighborhood of 1. Since by definition of a local
group, the map p : Ω → G is continuous, and since 1 ∈ image(p) ∩ U1,
there are open sets V1, V2 such that V1 × V2 ⊆ Ω and V1V2 ⊆ U1. We let
U2 := V1 ∩ V −11 ∩ V2 ∩ V −12 , then U2 is symmetric and U2 ⊆ V1 ∩ V2 so
U2 × U2 ⊆ Ω and U2U2 ⊆ V1V2 ⊆ U1.

Now assume inductively that n ≥ 2 and that for m = 1, . . . , n,

(i) Um is a symmetric open neighborhood of 1,
(ii) Um+1 ⊆ Um if m < n,
(iii) for all (a1, . . . , am) ∈ U×mm , a1 . . . am is defined,
(iv) the map φm : U×mm → G defined by φm(a1, . . . , am) = a1 . . . am is

continuous.

Let Un+1 be a symmetric open neighborhood of 1 such that Un+1 ⊆ Un
and such that, by continuity of φn, U×nn+1 ⊆ φ−1n (U2). Now let (a1, . . . , an+1) ∈
U
×(n+1)
n+1 , we want to show that (a1, . . . , an+1) represents a1.(a2, . . . , an+1).

As a1 ∈ Un+1 ⊆ U2 and a2 . . . an+1 is defined by induction hypothesis and
belongs to U2, as shown above, we get (a1, (a2 . . . an+1)) ∈ Ω. If 3 ≤ k ≤ n,

a1.((a2 . . . ak).(ak+1 . . . an+1))

is defined and equals

(a1.(a2 . . . ak)).(ak+1 . . . an+1))

because all the couples involved in products belong to Ω and so we can use
Formula (2.2) from Definition 1.12. Note also that φn+1 is continuous. �

The beginning of the proof also show a local version of Proposition 1.7,
namely that if G is a local group, Λ = G and V an open neighborhood of
1 in G, then there exists a symmetric open neighborhood W of 1 such that
W.W ⊆ V .

Corollary 1.26. The map φn : U×nn → G defined by φn(a1, . . . , an) =
a1 . . . an is continuous, and U×nn+1 ⊆ φ−1n (U2).

If A ⊆ Un, let An := {a1 . . . an : (a1, . . . , an) ∈ A×n}.

Recall that if U is an open neighborhood of 1, we have set ΩU := Ω ∩
(U × U) ∩ p−1(U). The construction of the sets Un now allow us to state
the following result.

Corollary 1.27. Let G = (G, 1,−1 , .) be a local group. Suppose Λ = G.
Let g, h ∈ U3 such that (g, h) ∈ ΩU3. Then (h−1, g−1) ∈ ΩU3 and (gh)−1 =
h−1g−1.

Proof. Suppose g, h ∈ U3 with (g, h) ∈ ΩU3 . We thus have

h−1, g−1, gh ∈ U3
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so h−1.g−1.(gh) is defined and

h−1.g−1.(gh) = h−1.(g−1.(gh)) = h−1h = 1

because of (2.2). We have also

h−1.g−1.(gh) = (h−1g−1).(gh)

so h−1g−1 = (gh)−1. The latter is contained in U3, thus (h−1, g−1) ∈ ΩU3 .
�

We next look at some assumptions that it is possible to make on the lo-
cal group G without loss of generality. Set U := Λ∩Λ−1. Then U is an open
neighborhood of 1 in G. If g ∈ U , then g−1 ∈ Λ and (g−1)−1 = g ∈ Λ. Thus
Λ∩U∩U−1 = U , meaning that the open set ΛU defined in 1.19 is equal to U .

Hence, from now on, we suppose Λ = G, as every local group has a
restriction satisfying this condition.

In particular G is now symmetric and we have the property that if
(x, y) ∈ Ω and xy = 1, then x = y−1 and y = x−1. Thus, for all x ∈ G,
(x−1)−1 = x.

Furthermore, Corollary 1.27 tells us that every local group has a restric-
tion satisfying the following assumption :

if (g, h) ∈ Ω then (h−1, g−1) ∈ Ω and (gh)−1 = h−1g−1

which will be made here.

In other words, the involution law and the inversion law are satisfied.

We will use the next lemma repeatedly. Its proof is not difficult but
requires some care.

Lemma 1.28. Let a, a1, . . . , an ∈ G. Then

(1) If a1 . . . an is defined and 1 ≤ i ≤ j ≤ n, then ai . . . aj is defined.
In particular, if an is defined and m ≤ n, then am is defined.

(2) If am is defined and i, j ∈ {0, . . . ,m} are such that i+ j = m, then
(ai, aj) ∈ Ω and ai.aj = am.

(3) If an is defined and, for all i, j ∈ {1, . . . , n} with i+ j = n+ 1, one
has (ai, aj) ∈ Ω, then an+1 is defined.
More generally, if a1 . . . an is defined, ai . . . an+1 is defined for all
i ∈ {2, . . . , n} and

(a1 . . . ai, ai+1 . . . an+1) ∈ Ω for all i ∈ {1, . . . , n}

then a1 . . . an+1 is defined.
(4) If an is defined, then (a−1)n is defined and (a−1)n = (an)−1. We

denote (a−1)n by a−n.
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More generally, if a1 . . . an is defined, then a−1n . . . a−11 is defined

and (a1 . . . an)−1 = a−1n . . . a−11 .
(5) If k, l ∈ Z, l 6= 0, and ak.l is defined, then ak is defined, (ak)l is

defined and (ak)l = ak.l.
(6) If i, j ∈ Z and i.j < 0, if ai and aj are defined and (ai, aj) ∈ Ω,

then ai+j is defined and ai.aj = ai+j.

Proof. (1) Immediate from the definitions
(2) Immediate from the definitions
(3) Follows from repeated use of Formula (2.2) (from Definition 1.12,

item local associativity)
(4) We prove the first assertion by induction on n. We have supposed

that Λ = G, so the case n = 1 is trivial. The case n = 2 follows from
Corollary 1.27 : if (a, a) ∈ Ω, then (a−1, a−1) ∈ Ω and (a2)−1 =
a−1.a−1 = (a−1)2.
For the induction step, suppose an+1 is defined and i, j ∈ {1, . . . , n}
with i+ j = n+ 1. As (aj , ai) ∈ Ω, we get by induction

((a−1)i, (a−1)j) ∈ Ω

Thus, by (3) of the lemma, we know that (a−1)n+1 is defined, and,
using the induction hypothesis, that :

(a−1)n+1 = (a−1)n.a−1 = (an)−1.a−1 = (a.an)−1 = (an+1)−1

The second part of (4) is shown similarly :
The cases n = 1 and n = 2 are similar to those of the first assertion.
For the induction step, suppose a1 . . . an+1 is defined. Then, for
i, j ∈ {1, . . . , n} such that i+ j = n+ 1,

(a1 . . . ai, ai+1 . . . an+1) ∈ Ω

hence

((ai+1 . . . an+1)
−1, (a1 . . . ai)

−1) ∈ Ω

and

(a1 . . . an+1)
−1 = a−1n+1 . . . a

−1
1

(5) It is enough to check the assertion for k, l ∈ N, l 6= 0, since we can
then use (4) of the lemma : ak being defined for k < 0 means that
a−k is defined. By (1) of the lemma and because k ≤ k.l, we have
that ak is defined. Then, we use induction on l. Suppose l ≥ 2, the
assertion is true for i ≤ l and ak.(l+1) is defined.
In order to see that (ak)l+1 is defined, one must check that

((ak)i, (ak)j) ∈ Ω

for i, j ∈ {1, . . . , l} such that i+ j = l + 1.
This is the case by (2), because for such i, j, we have k.i + k.j =
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k.(l+ 1) and by induction (ak)i = ak.i and (ak)j = ak.j . So (ak)l+1

is defined, and, by induction, we get :

(ak)l+1 = (ak)l.ak = ak.l.ak = ak.l+k

(6) From the previous assertions we obtain that ai+j and a−j are de-
fined. Then, if i = −j, the result is obvious. Let i, j be such
that i > 0, j < 0 and i > |j|. By the other assertions we have
ai = ai+j .a−j , whence ai.aj = ai+j by (2.2):

ai.aj = (ai+j .a−j)aj = ai+j .(a−j .aj) = ai+j

The other cases are similar.
�

5. Group germs

Studying local groups, it seems natural to consider restrictions of them,
and hence classes of restrictions of them:

Definition 1.29. Let G = (G, 1, ι, p) and G′ = (G′, 1′, ι′, p′) be two local
groups with domains respectively Ω,Λ and Ω′,Λ′. They are called locally
identical if they have a common restriction, i.e if there exists a set U ⊆ G∩G′
such that G|U = G′|U (1 = 1′, and the topology and the group operations as
well as their domains agree on U) .

It is obviously an equivalence relation; an equivalence class [G] of local
groups is called a germ or a group germ.

In the next two sections, we will see how to construct an ultrapower of
a local group G, in which we will consider a set called the monad of the
identity element 1. This set is closely related to the group germ [G], but
has the advantage to be a (global) group, instead of an equivalence class of
local groups.



CHAPTER 2

Saturation and ultraproducts

In this section we see how to construct a saturated ultraproduct which
is an elementary extension of a structure suiting our case. We first recall
the model-theoretic framework, then define the notions of type and of satu-
ration, a property allowing to go from a statement of the form ∀x∃yφ to a
statement of the form ∃y∀xψ; this kind of arrangement of quantifiers being
particularly useful when dealing with limits and asymptotic behaviours. We
then define ultraproducts, and ultrapowers, which are particular cases of el-
ementary extensions of a given model. We then look at necessary conditions
of construction. The section is mainly based on [3], and on [12].

1. Model theory : basic definitions

Definition 2.1. A language L is given by :

(1) A set of function symbols F , and positive integers nf (arities) for
each f ∈ F .

(2) A set of relation symbols R, and positive integers nR (arities) for
each R ∈ R.

(3) A set of constant symbols C
We write L = {f1, f2, . . . , R1, R2, . . . , c1, c2, . . .}

Definition 2.2. An L-structure M is given by :

(1) A nonempty set M , called the universe, domain, or underlying set
of M.

(2) A function fM : Mnf →M for each f ∈ F .
(3) A set RM ⊆MnR for each R ∈ R.
(4) An element cM ∈M for each c ∈ C.

We write M = (M,fM, RM, cM : f ∈ F , R ∈ R, c ∈ C).

Definition 2.3. Let M,N be L-structures with domains M,N . An L-
embedding η :M→N is a one-to-one map η : M → N that preserves the
interpretation of all the symbols of L.

(1) For all f ∈ F and a1, . . . , anf ∈M ,

η(fM(a1, . . . , anf )) = fN (η(a1), . . . , η(anf ))

(2) For all R ∈ R and a1, . . . , amR ∈M ,

(a1, . . . , amR) ∈ RM ⇔ (η(a1), . . . , η(amR)) ∈ RN

23
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(3) For all c ∈ C, η(cM) = cN

A bijective L-embedding is called an L-isomorphism. If M ⊆ N and the
inclusion map is an L-embedding, we say either that M is a substructure of
N or that N is an extension of M.

Definition 2.4. The set of L-terms is the smallest set τ such that:

(1) c ∈ τ for each constant symbol c ∈ C.
(2) τ contains variable symbols vi for i = 1, 2, . . ..
(3) If t1, . . . , tnf ∈ τ , then f(t1, . . . , tnf ) ∈ τ for each f ∈ F .

Definition 2.5. An atomic L-formula φ is either:

(1) t1 = t2, where t1, t2 ∈ τ
(2) (t1, . . . , tnR) ∈ R, where R ∈ R and t1, . . . , tnR ∈ τ .

We usually write it R(t1, . . . , tnR).

The set of L-formulas is the smallest set W containing the atomic formulas
and such that :

(1) If φ ∈ W, then ¬φ ∈ W.
(2) If φ and ψ ∈ W, then (φ ∧ ψ) ∈ W and (φ ∨ ψ) ∈ W.
(3) If φ ∈ W, then ∃viφ ∈ W and ∀viφ ∈ W.

We say that a variable v occurs freely in a formula φ if it is not inside a ∃v
or ∀v quantifier, otherwise we say that it is bound. A sentence is a formula
without free variable.

Definition 2.6 (satisfiability). Let φ be a formula with free variables
from v = (vi1 , . . . , vim). Let a = (ai1 , . . . , aim) ∈Mm. We inductively define
M � φ(a) as follows :

(1) If φ is t1 = t2, then M � φ(a) if tM1 (a) = tM2 (a)
(2) If φ is R(t1, . . . , tnR), then M � φ(a) if (tM1 (a), . . . , tMnR(a)) ∈ RM
(3) If φ is ¬ψ, then M � φ(a) if M 2 ψ(a)
(4) If φ is (ψ ∨ θ), then M � φ(a) if M � ψ(a) or M � θ(a)
(5) If φ is (ψ ∧ θ), then M � φ(a) if M � ψ(a) and M � θ(a)
(6) If φ is ∃vjψ(v, vj), then M � φ(a) if there is b ∈ M such that
M � ψ(a, b)

(7) If φ is ∀vjψ(v, vj), then M � φ(a) if M � ψ(a, b) for all b ∈M
If M � φ(a) we say that M satisfies φ(a) or that φ(a) is true in M.

An L-theory T is simply a set of L-sentences. We say thatM is a model
of T , and write M � T , if M � φ for all sentences φ ∈ T . A theory is said
to be satisfiable if it has a model.

If T is an L-theory and φ an L-sentence, we say that φ is a logical
consequence of T and write T � φ, if whenever M � T , then M � φ. An
L-theory T is called complete if for any L-sentence φ, either T � φ or T � ¬φ.
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Th(M) denotes the full theory of M, i.e. the set of L-sentences φ such
that M � φ. Note that Th(M) is a complete theory.

A set Σ of L-sentences is said to be finitely satisfiable iff every finite
subset of Σ is satisfiable.

Theorem 2.7 (Compactness Theorem). A set Σ of L-sentences is
finitely satisfiable iff it is satisfiable.

See for example [3] for a proof.

Definition 2.8 (Definable sets). Let M be an L-structure, and A ⊆
M . We say that X ⊆ Mn is A-definable iff there is b ∈ Am and an L-
formula φ(v1, . . . , vn, w1, . . . , wm) such that:

X = {a ∈Mn :M � φ(a, b)}

We say that φ(v, b) defines X, and that X is definable without parameters
if it is ∅-definable.

Definition 2.9. Let M and N be L-structures. An L-embedding j :
M→N is called an elementary embedding if, whenever a1, . . . , an ∈M ,
and φ(v1, . . . , vn) is an L-formula, then

M � φ(a1, . . . , an)⇔ N � φ(j(a1), . . . , j(an))

IfM is a substructure of N we then say that it is an elementary substructure,
or that N is an elementary extension of M, and write M≺ N .

2. Types and saturation

Let L be a language, T a satisfiable L-theory, and let Lx := L ∪
{x1, . . . , xn} ; x1, . . . , xn being new constant symbols, denoted like variables
by commodity. Let Sn(T ) be the set of complete Lx-theories containing
T . An element of Sn(T ) is called a complete n-type. A set of L-formulas
with n free variables is a n-type if it can be completed in a complete n-type.

Let M � T and A ⊆ M . Adding to L one new constant symbol for
each element of A, we obtain the language LA. We let ThA(M) denote the
theory of M in the language LA ; and SMn (A) := Sn(ThA(M)).

Let c ∈Mn. The set of LA-formulas φ(v1, . . . , vn) for whichM � φ(c) is
denoted tpMA (c) or pMA (c). For every type p(x) ∈ Sn(T ), there existsM � T
and a ∈Mn such that tpM(a) is equivalent to p(x).

Definition 2.10 (κ-saturated, saturated). Let κ be an infinite car-
dinal, L a language such that |L| < κ, T a satisfiable L-theory, and M � T .
We say thatM is κ-saturated if, whenever A ⊆M , |A| < κ and p ∈ SMn (A),
then p is realized in M.
We say that M is saturated if it is |M |-saturated.
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3. Ultrafilters, ultraproducts and the Transfer Principle

Definition 2.11. Let I be a nonempty set, and let P(I) denote the set
of all subsets of I. A filter D over I is defined to be a set D ⊆ P(I) such
that :

• I ∈ D
• If X,Y ∈ D, then X ∩ Y ∈ D
• If X ∈ D and X ⊆ Z ⊆ I, then Z ∈ D.

The first condition is sometimes replaced by ∅ /∈ D in the literature.
Note that the filter D is nonempty since I ∈ D. The filter D is called trivial
when it equals {I}; it is said to be proper when it is different from P(I).

Let E ⊆ P(I). The filter generated by E is the intersection of all
filters over I including E.

A filter D over a set I is said to be uniform iff every member of D has
the same cardinality |I|.

E has the finite intersection property iff the intersection of any fi-
nite number of elements of E is nonempty.

A filter D over I is said to be an ultrafilter iff for all X ∈ P(I),

X ∈ D ⇔ I \X /∈ D

Equivalently, D is an ultrafilter iff it is a maximal proper filter. Note that
an ultrafilter can be thought of as a finitely additive two-valued measure on
the subsets of I.

Proposition 2.12 (Ultrafilter Theorem). If E ⊆ P(I) and E has
the finite intersection property, then there exists an ultrafilter D over I such
that E ⊆ D. (Or, equivalently, any proper filter over I can be extended to
an ultrafilter over I.

Let L be a language (whose set of constants is C, set of relations R, set
of functions F), I an infinite set, D an ultrafilter over I, and, for each i ∈ I,
let Mi be an L-structure.
We define a new structure M :=

∏
Mi/D, called the ultraproduct of the

Mi using D. It will also be denoted M :=
∏
DMi. When all the Mi’s

are the same structure M0, the ultraproduct is called an ultrapower and is
often denoted M∗0.

First, let X be the cartesian product of the domains :

X :=
∏
i∈I

Mi = {f : I →
⋃
i∈I

Mi : ∀i, f(i) ∈Mi}
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We then define a relation ≈ on X :

f ≈ g iff {i ∈ I : f(i) = g(i)} ∈ D

It is easy to see that ≈ is an equivalence relation.
We define the universe of M to be M := X/ ≈.

M is an L-structure :

• If c ∈ C, let cM be the equivalence class of fc ∈ X, where fc(i) =
cMi for all i ∈ I
• If f ∈ F , with arity n, let g1, . . . , gn, h1, . . . , hn ∈ X such that for
k = 1, . . . , n, gk ≈ hk. For i ∈ I, let

gn+1(i) := fMi(g1(i), . . . , gn(i)) and

hn+1(i) := fMi(h1(i), . . . , hn(i))

As gn+1 ≈ hn+1,

fM(g1/ ≈, . . . , gn/ ≈) := gn+1/ ≈

is a well defined function on M.
• Let R ∈ R with arity n, and g1, . . . , gn, h1, . . . , hn as above. As

{i ∈ I : (g1(i), . . . , gn(i)) ∈ RMi} ∈ D

if and only if

{i ∈ I : (h1(i), . . . , hn(i)) ∈ RMi} ∈ D

we can define

RM := {(g1/ ≈, . . . , gn/ ≈) : {i ∈ I : (g1(i), . . . , gn(i)) ∈ RMi} ∈ D}

The following theorem is known as  Lòs’ theorem, but also under the
denominations : Transfer Principle, or Fundamental Theorem of Ul-
traproducts:

Theorem 2.13. Suppose that I is an infinite set and D is an ultrafilter
over I. Let (Mi)i∈I be L-structures, M :=

∏
Mi/D, and φ(v1, . . . , vn) be

a L-formula. Then,

M � φ(g1/ ≈, . . . , gn/ ≈) iff {i ∈ I :Mi � φ(g1(i), . . . , gn(i))} ∈ D

Proof. See for example [3]. �

Corollary 2.14. Let M∗ be an ultrapower of M. Then M is an ele-
mentary substructure of M∗.
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4. Construction of a suitable saturated ultraproduct

We want to show the existence of κ-saturated ultraproducts for cardinals
κ bigger than ℵ1. In this subsection we define properties of ultrafilters such
as goodness and κ -regularity. Then we show the existence of an ultrafilter
with both properties, and, finally, we show that an ultraproduct modulo
such an ultrafilter is κ-saturated. The reader who is mainly interested in
local H5 can skip this section. This section is based on Model Theory, by
C.C.Chang and H.G.Keisler ([3]). We give here more detailed proofs than
in the book; except for a couple of them.

4.1. κ-regular ultrafilters.

Definition 2.15. An ultrafilter D is said to be countably incomplete
iff D is not closed under countable intersections.
Let κ be a cardinal. A proper filter D over a set I is said to be κ-regular
iff there exists a set E ⊆ D of cardinality κ such that each i ∈ I belongs to
only finitely many e ∈ E.

Note that an ultrafilter D is ω-regular iff D is countably incomplete.

Theorem 2.16. Let L be countable, and let D be a countably incomplete
ultrafilter over a set I. Then for every family Mi, i ∈ I, of models for L,
the ultraproduct

∏
DMi is ℵ1-saturated.

Proposition 2.17 (Existence). For any set I of infinite cardinality κ,
there exists a κ-regular ultrafilter D over I.

Proof. [3]It suffices to show that some set J of cardinality κ has a
κ-regular ultrafilter over it ; hence we can consider the set of all finite sub-
sets of κ, namely Pω(κ) (as it has cardinality κ). For each β ∈ κ, let

β̂ := {j ∈ Pω(κ) : β ∈ j}, and let E := {β̂ : β ∈ κ}. Then |E| = κ.

Moreover, each j ∈ Pω(κ) belongs to only finitely many β̂ ∈ E, because j is

finite, and j ∈ β̂ means β ∈ j. It follows that any proper filter over Pω(κ)
which includes E is κ-regular.

Let β̂1, . . . , β̂n, n ∈ ω be elements of E. Note that β̂i is the set of all
finite subsets of κ that contain βi, so β̂i contains {β1, . . . , βn}. Thus

{β1, . . . , βn} ∈ β̂1 ∩ . . . ∩ β̂n
i.e. E has the finite intersection property.

Hence by the Ultrafilter Theorem 2.12, E can be extended to an ultra-
filter D over Pω(κ), whence D is a κ-regular ultrafilter. �

4.2. Goodness.

Definition 2.18. Let I be a nonempty set and β a cardinal. We consider
functions f, g on the set Pω(β) of all finite subsets of β into the set P(I) of
all subsets of I.
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(1) We say that f ≤ g iff for all u ∈ Pω(β), f(u) ⊆ g(u) (i.e. each
value of f is included in the corresponding value of g).

(2) We say that f is monotonic iff for u, v ∈ Pω(β),

u ⊆ v ⇒ f(u) ⊇ f(v)

(3) We say that f is additive iff for u, v ∈ Pω(β),

f(u ∪ v) = f(u) ∩ f(v)

Lemma 2.19. Every additive function on Pω(β) into P(I) is monotonic.

The proof is clear.

Definition 2.20. Let κ be an infinite cardinal. An ultrafilter D over a
set I is said to be κ-good iff :
For every cardinal β < κ and every monotonic function f : Pω(β) → D,
there exists an additive function g : Pω(β)→ D such that g ≤ f . (monotonic
functions can be refined by additive functions)

Note that if D is κ-good then D is β-good for all infinite cardinals β < κ.

Lemma 2.21. An ultrafilter D is κ+-good iff :
For every monotonic function f : Pω(κ) → D, there exists an additive
function g : Pω(κ)→ D such that g ≤ f .

Proof. [3] The necessity is clear. Conversely, let β ≤ κ, and let f :
Pω(β)→ D be monotonic. We define another function F :

F : Pω(κ) → D
u 7→ F (u) = f(u ∩ β)

F is monotonic, so there exists an additive function G : Pω(κ) → D such
that G ≤ F . Now we put

g := G�Pω(β)

The function g maps Pω(β) into D, is additive, and satisfies g ≤ f : for
u ∈ Pω(β), g(u) = G(u) ≤ F (u) = f(u ∩ β) = f(u). �

Lemma 2.22. Let X be a set of infinite cardinality κ, and let (Yx)x∈X be
a family of sets each of which has cardinality κ. Then there exists a family
of sets (Zx)x∈X , such that for all x, y ∈ X :

(1) Zx ⊆ Yx
(2) |Zx| = κ
(3) x 6= y ⇒ Zx ∩ Zy = ∅

In other words, any family of κ sets, each (of which) of cardinality κ, can
be refined to a family of κ disjoint sets of cardinality κ.

Proof. [3] We may assume without loss of generality that X = κ. For
each ordinal α < κ, we define Xα to be the set of ordered couples :

Xα := {(γ, δ) : γ ≤ δ and δ < α}
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It is a subset of κ × κ, that can be viewed as a right triangle with sides of
length α. We also let

Xκ :=
⋃
β<κ

Xβ

Then we want to construct a function

f : Xκ →
⋃
{Yη : η < κ}

(γ, δ) 7→ f(γ, δ) such that f(γ, δ) ∈ Yγ
and such that f is one-one. Once this function f found, it is possible to
define

Zγ := {f(γ, δ) : γ ≤ δ < κ}
and the family (Zγ)γ<κ clearly has the three desired properties.

So we shall now define the function f , using transfinite induction : Let
α < κ and suppose that we already have a one-one function fα with domain
Xα and satisfying the following property :

P (α) : whenever γ ≤ δ < α, f(γ, δ) ∈ Yγ(4.1)

As |Xα| < κ, and as |Yγ | = κ for all γ < κ, we may extend fα to a one-one
function fα+1 with domain Xα+1 such that (4.1) holds for α + 1, i.e. such
that P (α+ 1).
For each γ ≤ α, we pick a value fα+1(γ, α) ∈ Yγ which is different from all the
previously chosen values of fα+1 (which is possible since |Yγ | > |Xα+1|). By
taking unions at the limit ordinals, we obtain a chain of one-one functions fα
with domain Xα and satisfying property (4.1). Then the union f =

⋃
α<κ fα

is a one-one function with domain Xκ satisfying (4.1) P (κ). �

Definition 2.23. Let Π be a nonempty collection of partitions of κ such
that each partition has exactly κ equivalence classes, and let F be a nontrivial
filter over κ.

(1) We say that the pair (Π, F ) is consistent iff given any X ∈ F and
any X1, . . . , Xn, n ∈ ω, each Xi belonging to a distinct partition
Pi ∈ Π, then

X ∩
⋂

1≤i≤n
Xi 6= ∅

(2) If F is a filter and F ∪ E has the finite intersection property, we
let (F,E) denote the filter generated by F ∪ E.

Lemma 2.24. Let κ be an infinite cardinal.

(i) Let F be a uniform filter over κ, generated by a subset E ⊆ F , such
that |E| ≤ κ.
There exists a collection Π of partitions of κ such that |Π| = 2κ and
(Π, F ) is consistent.

(ii) Suppose that (Π, F ) is consistent. Let J ⊆ κ.
Then either (Π, (F, {J})) is consistent, or else (Π′, (F, {κ\J})) is con-
sistent for some cofinite Π′ ⊆ Π.
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(iii) Suppose that (Π, F ) is consistent. Let p be any monotonic mapping of
Pω(κ) into F and let P ∈ Π.
Then there exists an extension F ′ of F and an additive function q :
Pω(κ)→ F ′ such that q ≤ p and (Π \ {P}, F ′) is consistent.

Proof. (i) Let (Jβ)β<κ be a list of all finite intersections of members
of E ⊆ F . As a filter, F is closed under finite intersections, so each Jβ
is a member of F , and thus has cardinality κ by uniformity of F . By
Lemma 2.22, there is a family (Iβ)β<κ, such that |Iβ| = κ, Iβ ⊆ Jβ,
and Iβ ∩ Iβ′ = ∅ if β 6= β′. Consider the set of couples :

B = {(s, r) : s ∈ Pω(κ) and r : P(s)→ κ}

Given s ∈ Pω(κ), let P(s)κ denote the set of functions from P(s) to κ.

Then |B| = |Pω(κ)| × |P(s)κ| = κ× κ = κ.
So we let ((sξ, rξ))ξ<κ be an enumeration of B (with possible repeti-
tions) in such a way that

B = {(sξ, rξ) : ξ ∈ Iβ} for each β < κ

For each J ⊆ κ, we define the function fJ : κ→ κ as follows :

fJ(ξ) = rξ(J ∩ sξ) if ξ ∈
⋃
β<κ

Iβ

fJ(ξ) = 0 otherwise

There are 2κ subsets J of κ, thus 2κ functions fJ . We next show that
the fJ ’s are pairwise distinct. Suppose that J1 6= J2. By symme-
try and without loss of generality, we may suppose that there is an
x ∈ J1 such that x /∈ J2. Let s = {x} and r = {({x}, 0), (∅, 1)}. Then
(s, r) ∈ B, so (s, r) = (sξ, rξ) for some ξ. Now fJ1(ξ) = r(J1 ∩ s) = 0
and fJ2(ξ) = r(J2 ∩ s) = 1 ; so fJ1 6= fJ2 .

Now let β, γ1, . . . , γn be ordinals in κ, and let J1, . . . , Jn be distinct
subsets of κ. We will show that there is a ξ ∈ Iβ such that

fJi(ξ) = γi for 1 ≤ i ≤ n

(note that it will also show that the range of each fJ is κ)
Let s ∈ Pω(κ) be such that s∩Ji 6= s∩Jj for 1 ≤ i < j ≤ n. It is then
possible to define r : P(s) → κ by r(Ji ∩ s) = γi, for i = 1, . . . , n. As
there is a ξ ∈ Iβ such that (sξ, rξ) = (s, r), we obtain

fJi(ξ) = rξ(Ji ∩ sξ) = r(Ji ∩ s) = γi

We finally put

Π := {{f−1J (γ) : γ < κ} : J ⊆ κ}
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Because each fJ is surjective, and because f−1J (β) ∩ f−1J (α) = ∅ if

β 6= α, {f−1J (γ) : γ < κ} is a partition of κ ; as there are 2κ distinct
functions fJ , Π is well a collection of 2κ partitions of κ.

Next let X ∈ F and (Xi)1≤i≤n such that Xi ∈ Pi ∈ Π and Pi 6= Pj
for i 6= j. Then there are γi, Ji with Xi = f−1Ji (γi), and β such that
Jβ ⊆ X. Therefore, as shown above, there is ξ ∈ Iβ ⊆ Jβ such that
fJi(ξ) = γi, meaning that

X ∩
n⋂
i=1

Xi 6= ∅

i.e. (Π, F ) is consistent.
(ii) Suppose that (Π, (F, {J})) is not consistent. Then there are X ∈ F ,

Xi ∈ Pi ∈ Π, 1 ≤ i ≤ n, the Pi’s being pairwise distinct, such that :

J ∩X ∩
n⋂
i=1

Xi = ∅(4.2)

Let Π′ := Π\{P1, . . . , Pn}. Let Qj , 1 ≤ j ≤ m, be distinct elements
of Π′ and Yj ∈ Qj . Because P1, . . . , Pn, Q1, . . . , Qm are distinct and
(Π, F ) is consistent, we get :

X ∩
n⋂
i=1

Xi ∩
m⋂
j=1

Yj 6= ∅(4.3)

From (4.2) and (4.3) we obtain :

(κ \ J) ∩X ∩
m⋂
j=1

Yj 6= ∅

So (Π′, (F, {κ \ J})) is consistent.
(iii) Let Xδ, δ < κ be an enumeration of P without repetition, and, likewise,

let Pω(κ) := {tδ : δ < κ}. For each δ < κ, we define a function
qδ : Pω(κ)→ P(κ) in the following way :

qδ(s) = p(tδ) ∩Xδ if s ⊆ tδ
qδ(s) = ∅ if s * tδ

Note that s1 ∪ s2 ⊆ tδ iff both s1 ⊆ tδ and s2 ⊆ tδ, hence
qδ(s1 ∪ s2) = qδ(s1) ∩ qδ(s2), i.e. the qδ’s are additive functions.
Remark that qδ(s) ⊆ p(tδ). Since Xδ ∈ P ∈ Π and p(tδ) ∈ F , consis-
tency of (Π, F ) implies that qδ(s) 6= ∅ if s ⊆ tδ. We next define the
function :

q :
Pω(κ) → P(κ)
s 7→

⋃
δ<κ qδ(s)

As p is monotonic, we see easily that q(s) ⊆ p(s) :
If x ∈ q(s), there is δ such that x ∈ Xδ ∩ p(tδ), s ⊆ tδ. Since p is
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monotonic, p(tδ) ⊆ p(s), i.e. q ≤ p.
Since δ 6= δ′ implies Xδ ∩ Xδ′ = ∅ implies qδ(s) ∩ qδ′(s) = ∅, we have
that q(s) is a disjoint union of subsets of elements of P .
We can easily see that q is additive using the additivity of qδ and the
fact that Xδ ∩Xδ′ 6= ∅ iff δ = δ′.

Now let F ′ = (F, Image q). Claim : (Π \ {P}, F ′) is consistent.
Let X ∈ F , s ∈ Pω(κ), Xi ∈ Pi ∈ Π, 1 ≤ i ≤ n, the Pi’s being pairwise
distinct and different from P . Since s = tδ for some δ < κ, we have
q(s) ⊇ qδ(s) = p(tδ) ∩Xδ, and

X ∩ p(tδ) ∩Xδ ∩
⋂

1≤i≤n
Xi 6= ∅

(Xδ ∈ P so it is distinct from the Xi’s. p(tδ) ∈ F , so X ∩ p(tδ) ∈ F .
Hence we get the above result by consistency of (Π, F ))
Whence

X ∩ q(s) ∩
⋂

1≤i≤n
Xi 6= ∅

�

We are now able to state and prove the following theorem :

Theorem 2.25. Let I be a set of infinite cardinality κ. Then there exists
a κ+-good countably incomplete ultrafilter D over I.

Proof. Without loss of generality, we may assume that I = κ. Let
(In)n<ω be a sequence of subsets of κ, each of cardinality κ, such that
In+1 ⊆ In and

⋂
n<ω In = ∅ (this is possible because of Proposition 2.17).

Let F0 be the uniform filter generated by the set {In : n ∈ ω}. By Lemma
2.24 (i), let Π0 be any collection of partitions of κ such that |Π0| = 2κ and
(Π0, F0) is consistent. We shall define by transfinite induction two sequences
(Πξ)ξ<2κ and (Fξ)ξ<2κ such that

Πξ ⊆ Πη, Fξ ⊇ Fη if η ≤ ξ < 2κ

|Πξ| = 2κ, |Πξ \Πξ+1| < ω

Πλ =
⋂
η<λ

Πη, λ limit

(Πξ, Fξ) is consistent for ξ < 2κ

We make the construction in the following way : Let (pξ)ξ<2κ be an
enumeration of all monotonic functions mapping Pω(κ) into P(κ), and let
(Jξ)ξ<2κ , be an enumeration of P(κ).
Suppose that Πη, Fη for η < ξ < 2κ have been defined satisfying all the
inductive hypotheses.
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• If ξ is a limit ordinal, then simply let

Πξ =
⋂
η<ξ

Πη and Fξ =
⋃
η<ξ

Fη

It is clear that |Πξ| = 2κ and (Πξ, Fξ) is consistent:
let X ∈ Fξ, and Xi ∈ Pi ∈ Πξ, for i = 1, . . . , n such that the Pi’s are
pairwise distinct. Then there exists η, X ∈ Fη. As Xi ∈ Pi ∈ Πη

for all i ≤ n, we get

X ∩
n⋂
i=1

Xi 6= ∅

• If ξ = λ + 2n + 1, λ a limit ordinal and n < ω, then let J be the
first element of P(κ) not already in Fξ−1. By Lemma 2.24 (ii), we
can find Πξ, Fξ such that

(Πξ, Fξ) is consistent

|Πξ| = 2κ, |Πξ−1 \Πξ| < ω

J ∈ Fξ or (κ \ J) ∈ Fξ
• If ξ = λ+ 2n+ 2, λ a limit ordinal and n < ω, then let

p : Pω(κ)→ Fξ−1

be the first function in the list (pξ)ξ<2κ , which we have not already
dealt with. By Lemma 2.24 (iii), we can find Πξ, Fξ, q : Pω(κ)→ Fξ
such that

|Πξ| = 2κ, |Πξ−1 \Πξ| = 1

q ≤ p, q is additive

Fξ = (Fξ−1, image(q))

(Πξ, Fξ) is consistent

Let F =
⋃
ξ<2κ Fξ. Because of our construction, we see that F is a

countably incomplete κ+-good ultrafilter over κ. Furthermore, cf(2κ) > κ
(i.e. within 2κ there is no unbounded sequence of cardinality less or equal
than κ), hence if p : Pω(κ) → F , |domain(p)| = κ, thus there is ξ < 2κ

such that image(p) ⊆ Fξ, and therefore the previous construction shows
that there is an additive function q refining p.

�

4.3. Main theorem.

Theorem 2.26. Let κ be an infinite cardinal and let D be a countably
incomplete κ-good ultrafilter over a set I. Suppose |L| < κ. Then for any
family (Mi)i∈I of models for L, the ultraproduct ΠDMi is κ-saturated.
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Proof. It is sufficient to prove that for every set Σ(x) of formulas of L,
if every finite subset of Σ(x) is satisfiable in ΠDMi, then Σ(x) is satisfiable
in ΠDMi.

Suppose that every finite subset of Σ(x) is satisfiable in ΠDMi. As D
is countably incomplete, by definition there is a descending chain

I = I0 ⊇ I1 ⊇ I2 ⊇ · · ·

such that each In ∈ D and
⋂
n<ω In = 0. We also know that |Σ| < κ because

|L| < κ and Σ is a countable union of subsets of Pω(L) (Σ can be written
as a union, indexed by N, of sets of formulas, the length of which is less or
equal to n ∈ N. It is possible to encode such a formula (and thus, such a set
of formulas) by a subset of Pω(L), if we extend L with symbols representing
∀,∃, (, ) and with numbers to quote the position of a given symbol in the
formula). Let f : Pω(Σ)→ D be such that for every finite subset σ of Σ,

f(σ) = I|σ| ∩ {i ∈ I :Mi � ∃x
∧
σ}

with the understanding that f(∅) = I. Each σ ∈ Pω(Σ) is finite and is
satisfiable in ΠDMi, whence ΠDMi � ∃x

∧
σ. By the Transfer Principle

2.13, f(σ) ∈ D.

Let σ ⊆ τ ∈ Pω(Σ). Then

I|τ | ⊆ I|σ| and (∃x
∧
τ → ∃x

∧
σ)

so f(τ) ⊆ f(σ) i.e. f is monotonic.

Since D is κ-good, there is an additive function g ≤ f on Pω(Σ) into D.
For each i ∈ I, let

σ(i) :=
⋃
{θ ∈ Σ : i ∈ g({θ})}

Claim : if |σ(i)| ≥ n, then i ∈ In.
Indeed if σ(i) has at least n distinct elements θ1, . . . , θn, then for s ≤ n we
have i ∈ g(θs), whence using the additivity of g :

i ∈ g({θ1}) ∩ . . . ∩ g({θn}) = g({θ1, . . . , θn}) ⊆ f({θ1, . . . , θn}) ⊆ In

As
⋂
n<ω In = ∅, for each i ∈ I, σ(i) is finite.

Then we pick an element hD which satisfies Σ(x) in ΠDMi. For each
i ∈ I, we have by definition of f(σ) and of σ(i), and by additivity :

i ∈
⋂
{g({θ}) : θ ∈ σ(i)} = g(σ(i)) ⊆ f(σ(i))

so i ∈ f(σ(i)).
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Next, by construction of f(σ) it is possible to choose an element h(i) ∈
Mi for which

∧
σ(i). That can also be written

Mi �
∧
σ(i) [h(i)]

Henceforth, whenever θ ∈ σ and i ∈ g({θ}), we have θ ∈ σ(i) and thenMi �
θ [h(i)]. But g({θ}) ∈ D, so by the Transfer Principle 2.13 ΠDMi � θ [hD]
for all θ ∈ Σ, which shows that hD satisfies Σ in ΠDMi. �



CHAPTER 3

The nonstandard setting

Let G := (G, 1, .,−1 ) be a local group as defined in 1.12, with the extra
assumptions made in Section 4 of Chapter 1, namely Λ = G and we suppose
that G has been restricted to U3; hence G is a homogeneous space in which
the inversion and involution laws are satisfied:

• If (x, y) ∈ Ω and xy = 1, then x = y−1 and y = x−1. Thus, for all
x ∈ G, (x−1)−1 = x.
• If (g, h) ∈ Ω then (h−1, g−1) ∈ Ω and (gh)−1 = h−1g−1.

Set L := {1, .,−1 }. Let O := (Oi)i∈I be a base of open neighborhoods of
the identity in G. In order to express properties of the local group G within
first order logic, we extend L into a language LP := L ∪ {Pi, i ∈ I}, where
Pi is a unary relation symbol, interpreted in G by the open set Oi. We can
thus express a statement such as ”x ∈ Oi” by the formula Pi(x). In other
words, Pi(G) = Oi, i.e. the set Oi is definable in the language LP .

Note that we will abuse notation and identify the local group G and
the LP -structure (G, 1, .,−1 , (Pi)i∈I). Under our assumptions, for i ∈ I and
g ∈ G, {g} × Oi ⊆ Ω and Oi × {g} ⊆ Ω, then g.Oi and similarly Oi.g are
open neighborhoods of g by Lemma 1.14, and O−1i is an open neighborhood
of 1. For g ∈ G, we let Og denote the set of open neighborhoods of g.

Next, to express properties of elements lying in a ”small” neighborhood
of 1, we will consider a saturated elementary extension of G in which we
will have ”infinitesimal” elements. Let U be an ultrafilter on I which is
|I|+-good and countably incomplete. This is possible through Theorem
2.25. The ultrapower of G, namely G∗ :=

∏
U G is then |I|+-saturated by

Theorem 2.26; and it is also an elementary extension of G by Corollary 2.14.
We let κ := |I|+.

This section is mainly based on Nonstandard Analysis [19] and An in-
vitation to Nonstandard analysis [11], respectively written by A.Robinson
and T.Lindstrøm. However, unlike their approaches , we stay in ultrapowers
of first-order structures. Consequently, we have adapted proofs and some
notions in a slightly different manner for the presentation here. The section
is also based on [5].

37
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1. Internal sets and general properties

We begin with general properties, most of which stay true (considering
a little adaptation of the proof) if G is a topological space which is not
especially a local group. We also mention some properties of R∗ and N∗,
ultrapowers of the structures (R,+, ., <, 0, 1) and (N,+, <, 0).

For the sake of readability, an element of G∗ will be denoted x or x = 〈xi〉
when accent is put on its ”mathematical nature” of an ”equivalence class of
elements of an infinite cartesian product”. Whenever it is possible, a similar
notation is used for sets and functions; this restriction will be explained
below. Writing xk = 〈xk,i〉, the Transfer Principle can be expressed as
follows :
If φ(v1, . . . , vn) is a LP -formula,

G∗ � φ(x1, . . . , xn) iff {i ∈ I : G � φ(x1,i, . . . , xn,i)} ∈ U

Let (Ai)i∈I be a sequence of subsets of G. We can add unary predicates
Ri to the language, such that RGi (x) iff x ∈ Ai. Note that the cardinality of
the expanded language is still |I|. We then define a subset 〈Ai〉 of G∗ by

〈xi〉 ∈ 〈Ai〉 iff {i : RGi (xi)} ∈ U

Definition 3.1. (1) A sequence (Ai)i∈I of subsets of G defines a
subset 〈Ai〉 of G∗ by

〈xi〉 ∈ 〈Ai〉 iff {i : xi ∈ Ai} ∈ U

A subset of G∗ which can be obtained in this way is called internal.
(2) A sequence (fi)i∈I of functions from G to G defines a function 〈fi〉

from G∗ to G∗ by

〈fi〉 (〈xi〉) = 〈fi(xi)〉

Any function that can be obtained in this way is called internal.

For instance, we can consider the internal function f∗ = 〈f, f, f, . . .〉, or,
for each A ⊆ G, the internal set A∗ = 〈A,A,A, . . .〉.

Let x = 〈xi〉 and Oj ∈ O.
Then {i ∈ I : Pj(xi)} ∈ U iff x ∈ Pj(G∗) = O∗j .

Notice also that the family of internal sets is closed under finite Boolean
operations, and that the ”product-like” structure of internal sets allows to
lift standard properties componentwise.

Definition 3.2. An element x ∈ R∗ is finite if −a < x < a for some
positive real number a. An element which is not finite is called infinite.

For example, if I = ω, two infinite numbers are 〈xn〉 := 〈n〉 and 〈yn〉 :=〈
−n2

〉
. Notice that there is no smallest infinite number. If ν ∈ N∗ \ N, i.e.
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ν is an infinite number of N∗, we write ν > N.

Proofs of Propositions 3.3 and 3.4 are those from [11]. We include them
for completeness.

Proposition 3.3. An internal, non-empty subset of R∗ which is bounded
above has a least upper bound.

Proof. [11] If the internal set A = 〈Ai〉 is bounded above by a = 〈ai〉,
then the set of i’s such that the corresponding Ai’s are bounded by ai’s
belongs to the ultrafilter U . Hence we may assume without loss of generality
that all the Ai’s are bounded above. Then b = 〈supAi〉 is the least upper
bound of A, i.e. b = sup 〈Ai〉. �

Proposition 3.4. Let A be an internal subset of R∗.
Overflow If A contains arbitrarily large finite elements, then A contains an

infinite element.
Underflow If A contains arbitrarily small positive infinite elements, then A

contains a finite element.

Proof. [11] Overflow: If A is unbounded, there is nothing to prove.
Thus let a be A’s least upper bound; a is clearly infinite, and there must be
an x ∈ A such that a

2 ≤ x ≤ a.
Underflow: Let b be the greatest lower bound of the set A+ of positive
elements in A; then b is finite, and there must be an x ∈ A such that
b ≤ x ≤ b+ 1. �

Recall that a set is said to be well-ordered if it is equipped with an order
such that there is no infinite decreasing sequence of elements. The nonstan-
dard natural numbers are not well-ordered, which does not contradict the
Transfer Principle, but which shows that the property of being well-ordered
cannot be expressed within first-order logic.

Proposition 3.5 (Internal induction). If A ⊆ N∗ is internal, con-
tains 0 and is closed under the successor operation, then A = N∗.

Proof. It is an application of the Transfer Principle. �

Definition 3.6. An internal (hyper)finite set is an internal set A =
〈Ai〉 where

{i ∈ I : Ai is finite} ∈ U

A lot of properties of finite sets can be extended to hyperfinite internal
sets.
Another definition is that an internal set A = 〈Ai〉 is (hyper)finite iff there
is ν ∈ N∗ and an internal bijection f : {1, . . . , ν} → A. This definition is
easily seen to be equivalent, using the notion of cardinality : |A| := 〈|Ai|〉.

Definition 3.7. Let ν = 〈νi〉 ∈ N∗ (finite or infinite), and let A be the
internal (hyper)finite set 〈{n ∈ N : 1 ≤ n ≤ νi}〉. A internal (hyper)finite
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sequence (xk)k∈A of elements of G∗ is an internal function k 7→ xk from A
to G∗, i.e. (xk)k∈A = (〈xi(ki)〉)k∈A.

It can also be seen in the following way, using a formalization which is
closer to the definition of a cartesian product : let (fn)n∈ω be a sequence of
functions fn : I → G, and ν = 〈νi〉. For k ∈ A, the element fk of G∗ is the
equivalence class of the sequence (fki(i))i∈I .

Proposition 3.8 (Internal definition principle). If B is an internal
set, and a1, . . . , an elements in

∏
U Gand ψ is a formula in the language LP ,

then

D = {c ∈ B : ψ(c, a1, . . . , an)}
is an internal set.

Proof. Write B = 〈Bi〉 and a := (a1, . . . , an). Let R be a symbol of
a unary predicate, which we add to LP . For i ∈ I, we define structures
Gi := (G,Bi), the domain of which is G and in which the predicate R is
interpreted by R(Gi) = Bi, or equivalently: for x ∈ Gi, RGi(x) iff x ∈ Bi.
Next we consider the ultraproduct of the Gi’s (instead of considering an
ultrapower of G). Then∏

U
Gi � (ψ(c, a) ∧R(c)) iff {i ∈ I : Gi � ψ(ci, ai) ∧R(ci)} ∈ U

Hence

D = 〈{ci ∈ Bi : ψ(ci, ai)}〉
�

Proposition 3.9. An infinite, internal set in a κ-saturated ultraproduct
of G has cardinality at least κ.

Proof. Let A be an infinite internal set, the cardinality of which,
namely α, is strictly less than κ, i.e. less or equal to |I|. We can write
A = 〈Ai〉. As

{i ∈ I : Ai is infinite} ∈ U
we can assume that Ai is infinite for all i ∈ I, and, further, of cardinality α
without loss of generality. Next we extend the language LP with symbols
cδ, δ < α, and with a unary predicate symbol R. Note that the cardinality
of the extended language is still ≤ |I|. We then define, for each i ∈ I, a
structure Gi in which

∀x RGi(x) iff x ∈ Ai
The symbols cδ, δ < α, are interpreted in Gi as an enumeration without
repetition of elements of Ai, and likewise by elements of A in the ultraprod-
uct. We next consider the family of sets {A \ {a}}a∈A, each of which can
now be written 〈Ai \ {ai}〉 by Proposition 3.8. In Gi, a finite intersection of



1. INTERNAL SETS AND GENERAL PROPERTIES 41

sets of the form
⋂n
k=1Ai \ {ak,i} is nonempty because Ai is infinite. Hence

the type

{x : R(x) ∧ (∃δ δ < α ∧ x 6= cδ) ∧
∧

γ,δ<α,γ 6=δ
cγ 6= cδ}

is satisfiable. Using κ-saturation in the ultraproduct
∏
U Gi, we get⋂

a∈A
(A \ {a}) 6= ∅

which is a contradiction. �

This shows in particular that if we are working with a set S containing R
and a topological space with a base of cardinality κ, then R∗ has cardinality
at least κ within the nonstandard κ-saturated model S∗. That means it is
impossible to fix a canonical set R∗ once and for all.

Definition 3.10 (monad). The monad of a point p ∈ G, denoted by
µ(p) is

µ(p) :=
⋂

O∈Op

O∗

In particular, µ(1) =
⋂
i∈I O

∗
i .

Note that µ(p) = p.µ(1).
First note that p.µ(1) is well defined: let J := {i ∈ I : {p} × Oi ⊆
Ω}, it is nonempty by Lemma 1.14. As in the proof of Lemma 1.14, let
Ωp := {h ∈ G : (p, h) ∈ Ω}. It is an open set containing 1. Then
µ(1) =

⋂
i∈I O

∗
i =

⋂
i∈J O

∗
i ∩

⋂
i∈I\J(Ω∗p ∩ O∗i ). Hence we can consider

p.µ(1).
Proof of the equality: if x ∈ µ(p), then x belongs to all standard open sets
containing p, in particular x belongs to p.O∗i , for i ∈ J , and to p.(Ω∗p∩O∗i ), for
i ∈ I \J . Now suppose x belongs to p.µ(1). Let W be an open neighborhood
of p in G. By continuity of the multiplication, there is V a neighborhood of
p and Oi such that V ×Oi ⊆ Ω and V.Oi ⊆ W , i.e. x ∈ p.Oi ⊆ W , whence
x ∈ µ(p). (Note that p ∈ G, and we also denote 〈p, p, p, . . .〉 by p).
It also shows that (p.Oi)i∈J is a base of neighborhoods of p.

The monad of a point p is not necessarily an internal set. If p is not
isolated, the type {Pi(x) ∧ x 6= p : i ∈ I} is satisfiable since it is finitely
satisfiable (a finite intersection of Oi \{p}’s is nonempty in G). It is realized
in G∗ by κ-saturation. Thus the monad can be seen as the realization of a
type, and µ(p) \ {p} is nonempty.

Next we transfer some standard properties in the ultrapower.

Theorem 3.11. Let A ⊆ G, and x ∈ G
(i) x is in the interior int(A) of A iff µ(x) ⊆ A∗

(ii) x is in the closure Ā of A iff µ(x) ∩A∗ 6= ∅
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Proof. Let A ⊆ G. We consider a unary relation symbol R, which we
add in the language, and which is interpreted in G by RG(x) iff x ∈ A.

(i) ⇒: Let x ∈ int(A) : there is an open set x.Oi ⊆ A. By transfer we get
(x.Oi)

∗ ⊆ A∗. As µ(x) ⊆ (x.Oi)
∗, it is then included in A∗.

⇐: If x is not in the interior of A, then for all open sets containing
x, V ∩ Ac 6= ∅. In particular, for all i ∈ I, x.(Oi ∩ Ωx) ∩ Ac 6= ∅. We
add a predicate for Ωx in the language. By transfer we get that for
all i ∈ I, (x.(Oi ∩ Ωx))∗ ∩ (Ac)∗ 6= ∅. As this stays true through finite
intersections of x.(Oj ∩ Ωx)’s, the type {y ∈ x.(Oi ∩ Ωx) : i ∈ I} is
finitely satisfiable hence satisfiable by the Compactness Theorem 2.7,
thus by κ-saturation we get µ(x) ∩ (Ac)∗ 6= ∅, i.e. µ(x) * A∗.

(ii) Apply (i) to Ac.

�

Definition 3.12 (nearstandard). An element x ∈ G∗ is called near-
standard (abbreviated ns) if it belongs to µ(p) for some p ∈ G. The set of
nearstandard points in G∗ is denoted G∗ns

G∗ns =
⋃
g∈G

g.µ(1)

In case G is T2, monads of distinct elements are disjoint, hence an ele-
ment x ∈ G∗ns is then nearstandard to exactly one element p ∈ G. It is then
possible to define the standard part of x by st(x) := p. We can think of
it as a map st : G∗ns → G.
We say that x and y are infinitely close if they are nearstandard and have
the same standard part. This is denoted by x ∼ y.

If G is T2, Theorem 3.11 can be rephrased in the following way:

Theorem 3.13. (i’) A is open in G iff st−1(A) ⊆ A∗
(ii’) A is closed in G iff A∗ ∩G∗ns ⊆ st−1(A)

Proposition 3.14. If G is T2 and A is an internal subset of G∗, then
st(A) is closed.

Proof. As an internal set, A can be written A = 〈Ai〉, and we can
suppose that each Ai = st(A). Once again, we add a predicate R to LP
interpreted in G as follows : ∀x RG(x) iff x ∈ st(A).

Let a ∈ st(A). Then, by definition of the closure of a set: for all O ∈ Oa,
we have that O∩st(A) 6= ∅. In particular for all i ∈ I, a.(Oi∩Ωa)∩st(A) 6= ∅.
By transfer the family ((a.(Oi ∩ Ωa))

∗ ∩ A)i∈I has the finite intersection
property, and by κ-saturation, the set⋂

i∈I
((a.(Oi ∩ Ωa))

∗ ∩A)
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has an element x. As x then belongs to the monad of a, it is obviously an
element of A such that st(x) = a. Thus a ∈ st(A), so we have shown that

st(A) ⊆ st(A), i.e. that st(A) is closed. �

Theorem 3.15. A ⊆ G is compact iff A∗ ⊆ G∗ns.
In other words, A ⊆ G is compact iff all points in A∗ are nearstandard iff
for every point q ∈ A∗, there is a standard point p ∈ A such that q ∈ µ(p).

Proof. In this proof, we assume that I is the set of indices for a base
of a topology, and not only for the base of neighborhoods of the identity.
As previously, we add a symbol R of a unary predicate to LP such that
RG(x) iff x ∈ A.

⇒: Suppose that A is compact and that there is a point p in A∗ \G∗ns.
Then p is not contained in the monad of any (standard) point in A nor in
G. Thus, every point x ∈ A possesses an open neighborhood x.Oi such that
p /∈ (x.Oi)

∗. Let {x.Oi : x ∈ A} be an open covering of A. As A is compact
we can extract a finite subcovering {x.O1, . . . , x.Ok}, say, k ≥ 1, such that

x.O1 ∪ . . . ∪ x.Ok = A

This formula of LP , interpreted in G∗, yields

(x.O1)
∗ ∪ . . . ∪ (x.Ok)

∗ = A∗

which entails that p ∈ (x.Oj)
∗ for some j, 1 ≤ j ≤ k, which is a contradic-

tion.

⇐: Suppose A is not compact; then there is a family of closed sets,
which can be indexed by I, {Fi}i∈I such that {Fi ∩ A}i∈I has the finite
intersection property, but ⋂

i∈I
(Fi ∩A) = ∅

In G∗ the family {F ∗i ∩ A∗}i∈I also has the finite intersection property,
but by |I|+-saturation

⋂
i∈I(F

∗
i ∩ A∗) must have an element x. Assume

that x is nearstandard to an element a in A, i.e. that there is a ∈ A,
x ∈ µ(a). Then µ(a) ∩ F ∗i 6= ∅ because it contains x. Since Fi is closed,
it follows from Theorem 3.11 that a ∈ Fi for all i ∈ I. But then, by
Transfer, a ∈

⋂
i∈I(Fi ∩ A) in G, which is a contradiction. Hence x cannot

be nearstandard to an element of A, and the proof is complete. �

Note that when A ⊆ X is compact, then A∗ ⊆ A∗ns.

Corollary 3.16. A topological group or a local group G is locally com-
pact if there is an open set U containing the identity and such that U

∗ ⊆ G∗ns.

Proof. Lemma 1.14 and Theorem 3.15 �
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Proposition 3.17. A function f : X → Y is continuous at a ∈ X if
and only if

f∗(µ(a)) ⊆ µ(f(a))

Proof.

⇒: let f be continuous at a and x ∈ µ(a). Let O := f(a).Oi be a
neighborhood of f(a). The aim is to show that f∗(x) ∈ O∗. By continuity of
f , there is a neighborhood V ∈ Oa of a such that f(V ) ⊆ O, so f∗(V ∗) ⊆ O∗.
(Writing f∗ = 〈f, f, f, . . .〉, V ∗ = 〈V, V, V, . . .〉, we see that

f∗(V ∗) = 〈f(V ), f(V ), f(V ), . . .〉
and each f(V ) ⊆ O.) As x ∈ V ∗, it follows that f∗(x) ∈ O∗.

⇐: let J := {i ∈ I : {a} × Oi ⊆ Ω}. We add a predicate in the
language corresponding to Ωa = {g ∈ G : (a, g) ∈ Ω}. Suppose that f is not
continuous at a. There is then a neighborhood O := f(a).Oj of f(a) such
that

for i ∈ J,Ai = {x : x ∈ a.Oi and f(x) /∈ f(a).Oj} 6= ∅
and

for i ∈ I \ J,Ai = {x : x ∈ a.(Oi ∩ Ωa) and f(x) /∈ f(a).Oj} 6= ∅
The family {A∗i }i∈I has the finite intersection property, and by κ-saturation
the sets A∗i have a common element u. By definition u ∈ µ(a), but f∗(u) /∈
(f(a).Oj)

∗. �

2. Infinitesimals in a local group

Let G be a local group. An element which belongs to the monad of the
identity µ(1) is called an infinitesimal. For example, within the hyperreals:
an element x ∈ R∗ is infinitesimal if −a < x < a for all positive real
numbers a. Note that zero is the only infinitesimal real number. Other
infinitesimals are, for an example if I = ω, 〈1/n〉 and 〈1/

√
n〉;

µ(0) =
⋂

n∈N\{0}

]
− 1

n
;

1

n

[∗

as R admits a countable basis for the usual topology, and, in particular, a
countable basis of neighborhoods of 0, namely(]

− 1

n
;

1

n

[)
n∈N\{0}

Lemma 3.18. (1) Let a, b ∈ G, such that (a, b) ∈ Ω. Then µ(a)µ(b) ⊆
µ(ab) in G∗.

(2) Let a ∈ G, such that a ∈ Λ. Then µ(a−1) = (µ(a))−1 in G∗.
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Proof. (1) Let a′ ∈ µ(a) and b′ ∈ µ(b), and let W = ab.Ok be
an open neighborhood of ab in G. By continuity of p on Ω, there
are open sets U = a.Oi, V = b.Oj in G such that U × V ⊆ Ω,
a ∈ U , b ∈ V , and UV ⊆ W . Then a′ ∈ U∗, b′ ∈ V ∗, and
U∗V ∗ ⊆W ∗. Hence a′b′ ∈W ∗ for any neighborhood W of ab in G,
i.e. a′b′ ∈ µ(ab).

(2) The proof is similar : let a′ ∈ µ(a) and let V be an open neighbor-
hood of a−1 in G. By continuity of ι, there is an open neighborhood
U of a in G, such that U ⊆ Λ and U−1 ⊆ V . Hence (a′)−1 ∈ V ∗,
i.e. (µ(a))−1 ⊆ µ(a−1). Now if we apply the same argument to a−1

instead of a, we get (µ(a−1))−1 ⊆ µ(a), so µ(a−1) ⊆ (µ(a))−1 and
thus (µ(a))−1 = µ(a−1).

�

Theorem 3.19. µ := µ(1) is a normal subgroup of G∗.

Proof. Let a, b ∈ µ(1). By the Lemma 3.18, we have that ab ∈
µ(1)µ(1) = µ(1) and that a−1 ∈ µ(1−1) = µ(1). This proves that µ is a
subgroup of G∗. The fact that it is also normal is shown similarly using
continuity of the conjugation. �

Definition 3.20. µ := µ(1) is called the infinitesimal group of G∗.

Lemma 3.21. (1) suppose a, b ∈ G, a′ ∈ µ(a) and b′ ∈ µ(b). If
(a, b) ∈ Ω, then (a′, b′) ∈ Ω∗, a′.b′ ∈ G∗ns, and st(a′.b′) = a.b.

(2) For any a ∈ G∗ns and b ∈ µ, (a, b), (b, a) ∈ Ω∗, a.b, b.a ∈ G∗ns, and
st(a.b) = st(b.a) = st(a)

(3) For any a, b ∈ G∗ns, if (a, b−1) ∈ Ω∗ and a.b−1 ∈ µ, then a ∼ b.
(4) For any a ∈ G, a′ ∈ µ(a), and any n, if an is defined, then (a′)n is

defined and (a′)n ∈ µ(an).

The proof is immediate using Lemma 3.18.

Lemma 3.22. Suppose U is a neighborhood of 1 in G and a ∈ µ. Then
there is ν > N such that aσ is defined and aσ ∈ U∗ for all σ ∈ {1, . . . , ν}.

Proof. Add a predicate R in the language, such that RG(x) iff x ∈
U .Let X := {σ ∈ N∗ : aσ is defined and aσ ∈ U∗}. Then X is an internal
subset of N∗ which contains N since µ is a subgroup of G∗. Hence by overflow
(Proposition 3.4), there is a ν > N such that {0, 1, . . . , ν} ⊆ X. �

Let a1, . . . , aν be an internal sequence of elements of G∗ with ν > 0,
ν = 〈νi〉. We want to define the product a1 . . . ak for all k ∈ {1, . . . , ν}.
The idea is to construct the product componentwise in G, i.e. (1) for every
i ∈ I, the element a1(i). · · · .aki(i) of G, and then to consider (2) the element
〈a1(i). · · · .aki(i)〉 of G∗.
(1): for i ∈ I, the element a1(i). · · · .aki(i) of G is defined if it follows the
rules stated in Definition 1.24.
(2): we show that this does not depend on the chosen representative. Let
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(mi)i∈I be such that 〈mi〉 = k. As {i ∈ I : mi = ki} ∈ U , we have that
{i ∈ I : a1(i). · · · .ami(i) = a1(i). · · · .aki(i)} ∈ U .

Lemma 3.23. Suppose G is locally compact. Let a1, . . . , aν be an internal
sequence of elements of G∗ with ν > 0 such that for all i ∈ {1, . . . , ν} we
have ai ∈ µ, a1 . . . ai is defined and a1 . . . ai ∈ G∗ns. Then the set

S := {st(a1 . . . ai) : 1 ≤ i ≤ ν} ⊆ G
is compact and connected (and contains 1).

Proof. First note that st(a1) = 1, as a1 ∈ µ. Next, to prove S is com-
pact, we show that S is a closed subset of a compact.
By Proposition 3.14, S, as the standard part of an internal set, must be
closed.
Now suppose towards a contradiction that for every compactK ⊆ G, S * K.
As K∗ is an internal set of G∗, there is k ∈ {1, . . . , ν} such that a1 . . . ak /∈
K∗; i.e. 〈a1(i) . . . aki(i)〉 /∈ K∗, i.e. {i ∈ I : a1(i) . . . aki(i) /∈ K} ∈ U . We
suppose that K contains 1, and, without loss of generality, that a1(i) = 1.
Then, for each i ∈ I, let li ∈ {1, . . . , ki} be the smallest element such
that a1(i) . . . ali(i) /∈ K. Thus a1(i) . . . ali−1(i) ∈ K, i.e. a1 . . . al ∈ K∗,
but st(a1 . . . al−1).st(al) = st(a1 . . . al−1).1 = st(a1 . . . al), yielding a con-
tradiction. Hence there is a compact C ⊆ G with a1 . . . ai ∈ C∗ for all
i ∈ {1, . . . , ν}, so S ⊆ C.

Now suppose S is not connected. Then we have disjoint open subsets
U and V of G such that S ⊆ U ∪ V and S ∩ U 6= ∅, S ∩ V 6= ∅. Assume
1 ∈ U . Then, as a1 ∈ µ, a1 ∈ U∗. Since S ∩ V 6= ∅, S∗ ∩ V ∗ 6= ∅,
so we can choose i ∈ {1, . . . , ν} minimal such that a1 . . . ai ∈ V ∗. Then
i ≥ 2 and a1 . . . ai−1 ∈ U∗. Now using Lemma 3.21 item (2), we have
a := st(a1 . . . ai−1) = st(a1 . . . ai) ∈ S, since ai ∈ µ and so st(ai) = 1. If
a ∈ U , then a1 . . . ai ∈ U∗ and if a ∈ V , then a1 . . . ai−1 ∈ V ∗ : both options
lead to a contradiction. �



CHAPTER 4

Growth of powers of infinitesimals

In this chapter, which is mainly based on [5], we examine different ways
powers of infinitesimals can grow. In particular the notion of purity is de-
fined; some links with the NSS and NSCS properties are shown. From now
on, we will not mention explicitly in the proofs that it is necessary to add
predicates in the language to have definable sets to use saturation.

1. Asymptotic notations, pure infinitesimals

Let ν, σ, τ, η,N range over N∗, i and j range over Z∗, m and n range
over N. Let x, y ∈ R∗.
Recall the Landau notations :

• We say that x = o(y) if for all n > 0, |x| < y
n

• We say that x = O(y) if there is some n > 0 for which |x| < ny

Hence x is infinitesimal iff x = o(1), and x is finite iff x = O(1). For
y 6= 0, x = O(y) iff x

y is finite, and x = o(y) iff x
y is infinitesimal. The

elements x and y are in the same ”archimedean class” if x = O(y) and
x 6= o(y).

From now on, we let the local group G be locally compact.
Considering elements in µ, we want to define a kind of ”order of infinitesi-
mality”, by describing the different ways their powers can grow:

Definition 4.1. Let ν ∈ N∗ such that ν > N. Let

G(ν) := {a ∈ µ : ai is defined and ai ∈ µ for all i = o(ν)}

Go(ν) := {a ∈ µ : ai is defined and ai ∈ µ for all i = O(ν)}

Note that the former contains the latter because

{i : i = O(ν)} ⊇ {i : i = o(ν)}

and that both sets are symmetric by definition of the Landau notations, and
through Lemma 1.28 item (4) extended to the nonstandard setting.

Lemma 4.2. Let a ∈ µ and ν > N. The following conditions are equiva-
lent:

(1) ai is defined and ai ∈ µ for all i ∈ {1, . . . , ν}
(2) a ∈ Go(ν)

47
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(3) there is τ ∈ {1, . . . , ν} such that ν = O(τ) and ai is defined and
ai ∈ µ for all i ∈ {1, . . . , τ}

Proof. (1) ⇒ (2): Let σ be such that σ = O(ν), i.e. there is n > 0
satisfying σ < nν. We want to show that aσ is defined and that aσ ∈ µ. We
prove the first assertion by internal induction on i. We first prove that ai is
defined for all i ∈ {1, . . . , σ}. This is true for all i ≤ ν, so now we suppose
that this is true for some i such that ν < i + 1 ≤ σ. By Lemma 1.28, in
order to show that ai+1 is defined, it suffices to show that (ak, al) ∈ Ω∗ for
all k, l ∈ {1, . . . , i} with k + l = i + 1. However, (ak, al) ∈ µ × µ ⊆ Ω∗,
because µ is a group ; which finishes the induction.
We next show that if aσ is defined, then aσ ∈ µ: we write σ = mν + η for
some m and η < ν. By Lemma 1.28,

aσ = (aν)m.aη ∈ µ.µ ⊆ µ
(2)⇒ (1) is clear.
(2) ⇒ (3): Recall that ν is infinite (in the sense that ν > n for all n ∈ N),
and that there is no smallest infinite number : ν 6= 0, so there is τ ∈ N∗ such
that ν = τ + 1, as the corresponding statement is true in N. This number τ
cannot be finite, otherwise ν would be finite. It also verifies ν = O(τ). The
rest is obvious.
(3) ⇒ (2): Suppose there is τ ∈ {1, . . . , ν} as in (3). By the proof of
(1) ⇒ (2), we see that a ∈ Go(τ). Now as i = O(ν) ⇒ i = O(τ), we have
that {i : i = O(τ)} ⊇ {i : i = O(ν)}, so Go(τ) ⊆ Go(ν), which concludes the
proof. �

Definition 4.3. An element a ∈ µ is said to be degenerate if, for all
i, ai is defined and ai ∈ µ.

Note that this term is the one used in [5], but in [20] the term param-
eter is used for nondegenerate elements.

Proposition 4.4. [20] G is NSS iff µ has no degenerate elements other
than 1.

Proof. G has no small subgroups iffG has no small cyclic subgroups.Let
j ∈ I such that Oj is a neighborhood of 1 which does not contain a non-
trivial subgroup of G; then if xi ∈ Oj and xi 6= 1, there is n ∈ N such that
xni /∈ Oj (i.e. ¬Pj(xni )); otherwise xi generates a group wholly contained in
Oj . Considering the set Axi = {x1i , x2i , . . . , xni , . . .}, this can also be written
Axi * Oj . Let x = 〈xi〉 ∈ µ. Then x ∈ O∗j , and if x 6= 1, by transfer

〈Axi〉 * O∗j ; i.e. there is ν ∈ N∗ with xν /∈ O∗j . But then xν /∈ µ, so x is not
degenerate.

Conversely, suppose that every neighborhood Oi of 1 contains a nontriv-
ial subgroup of G (which can be supposed to be of the form Axi as above).
By κ-saturation there is an element y ∈ µ \ {1}, such that for all ν ∈ N∗,
yν ∈ µ, hence y is degenerate. �
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From now on, let U denote a compact symmetric neighborhood
of 1 such that U ⊆ U2.
(It is assumed that a corresponding symbol of predicate is added to the
language.)

Definition 4.5 (order). Let a ∈ G∗. If, for all i, ai is defined and
ai ∈ U∗, define ordU (a) = ∞. Else, define ordU (a) = ν if, for all i with
|i| ≤ ν, ai is defined, ai ∈ U∗, and ν is the largest element of N∗ for which
this happens.

Lemma 4.6. (1) ordU (a) = 0 iff a /∈ U∗.
(2) ordU (a) > N if a ∈ µ.
(3) If a ∈ µ and ordU (a) = ν ∈ N∗, then aν+1 is defined.

Proof. (1) Immediate
(2) By Lemma 3.22
(3) Let i, j ∈ {1, . . . , ν} such that i+ j = ν + 1. Then

(ai, aj) ∈ U∗ × U∗ ⊆ U∗2 × U∗2 ⊆ Ω∗

Hence by Lemma 1.28, aν+1 is defined.
�

Notice that ordU (a) = ν because aν+1 is not in U∗, not because aν+1 is
undefined.

Definition 4.7. We say that a ∈ µ is U -pure if it is nondegenerate and
a ∈ G(τ), where τ := ordU (a). We say that a ∈ µ is pure if it is V -pure
for some compact symmetric neighborhood V of 1 such that V ⊆ U2.

If U contains no nontrivial connected subgroup of G, then every a ∈ µ
which is nondegenerate is U -pure (and thus if G is NSS, every a ∈ µ \ {1}
is U -pure for all U):

Lemma 4.8. Suppose a ∈ µ and ai /∈ µ for some i = o(ordU (a)). Then
U contains a nontrivial connected subgroup of G.

Proof. By Lemma 3.23, the set

GU (a) := {st(ai) : |i| = o(ordU (a))}
is a union of connected subsets of U , each containing 1, hence is connected.
It is also a subgroup of G by Lemma 1.28. �

Lemma 4.9. Let a ∈ µ. Then a is pure iff there is ν > N such that aν

is defined, aν /∈ µ and a ∈ G(ν).

Proof. First suppose that a is V -pure. Let ν = ordV (a). Then by
definition of the order aν is defined. Now since aν+1 is defined (see Lemma
4.6), aν /∈ µ, else aν+1 = aν .a would be in µ, contradicting the fact that
aν+1 /∈ V ∗. However, ai ∈ µ for i = o(ν) by definition of V -purity. Con-
versely, suppose one has ν > N such that aν is defined, aν /∈ µ and a ∈ G(ν).
Since aν /∈ µ, there is a compact symmetric neighborhood V of 1 such that
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V ⊆ U2 and such that aν /∈ V ∗. Hence max{k ∈ N∗ : ak ∈ V ∗} exists, and
we set τ := ordV (a). Then τ < ν, implying that a ∈ G(τ) and thus a is
V -pure. �

2. Special neighborhoods

In this subsection, it is assumed that G is NSS. Recall Lemma 1.25 which
states the existence of open symmetric neighborhoods Un of 1 for n > 0 such
that Un+1 ⊆ Un and for all (a1, . . . , an) ∈ U×nn , a1 . . . an is defined.

Definition 4.10. A special neighborhood of G is a compact symmet-
ric neighborhood U of 1 in G such that U ⊆ U2, U contains no nontrivial
subgroup of G, and for all x, y ∈ U , if x2 = y2, then x = y.

We will now show that G has a special neighborhood. We first look
for an ”almost locally invariant” neighborhood of 1, i.e. which is almost
invariant by conjugation, for elements sufficiently close to identity. We begin
by some Lemmas about local groups, which we have adapted from results
on topological groups in [13].

Lemma 4.11. Let F , C ⊆ G such that F is closed, C is compact, C ⊆ U3,
and F ∩C = ∅. Then there is a neighborhood V of 1 such that V ⊆ U3, and
F ∩ CV = ∅.
Similarly, there is V ′ ⊆ U3 such that F ∩ V ′C = ∅.

Proof. Let x ∈ C, x is thus in the open set U3 \ F ⊆ G \ F . By
the remark after Lemma 1.25, there is a neighborhood Wx of 1 such that
Wx ⊆ U3 and W 2

x ⊆ x−1(U3 \ F ). By compacity of C, there is a set of
points xi, i = 1, . . . , n, and a set of associated neighborhoods Wxi such that
xi(Wxi)

2 ⊆ (U2 \ F ) and
n⋃
i=1

xiWxi ⊇ C

Set

V :=
n⋂
i=1

Wxi

Then V ⊆ U3 and for any x ∈ C, there is some i, 1 ≤ i ≤ n such that
x ∈ xiWxi , so xV ⊆ xiW 2

xi ⊆ G\F . Hence xV ∩F = ∅ and thus CV ∩F = ∅.

�

Lemma 4.12. Assuming that G is locally compact, let K ⊆ U12 be a
compact subset of G and let O ⊆ U3 be an open neighborhood of 1. There
exists a neighborhood V ⊆ U12 of 1 in G such that for all x ∈ K, xV x−1 ⊆ O.

Proof. Let x ∈ K. By Proposition 1.2 and local compacity of G, there
is a compact neighborhood Vx of 1 such that Vx ⊆ xOx−1 ∩ U12. Then,
setting F := G \ O, we obtain that x−1Vxx ∩ F = ∅. Consequently, as F is
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closed, by Lemma 4.11 and local compacity there is a compact symmetric
neighborhood W 0

x ⊆ U12 of 1 such that x−1VxxW
0
x ∩ F = ∅. Since the

product of two compact sets is compact, and since the image by a continuous
application of a compact is compact,we get that x−1VxxW

0
x is compact, so

we can apply a second time Lemma 4.11, hence there is a compact symmetric
neighborhood W 1

x ⊆ U5 of 1 such that

W 1
xx
−1VxxW

0
x ∩ F = ∅

Let Wx := W 0
x ∩W 1

x . Then Wxx
−1VxxWx ∩ F = ∅. For any y ∈ xWx,

y−1 ∈Wxx
−1 and y−1Vxy ⊆ O.

By compacity of K, there is some finite subset X of G such that

K ⊆
⋃
x∈X

xWx

where each Wx is associated with Vx, as constructed above.
We set V :=

⋂
x∈X Vx. Consequently, if y ∈ K, then y ∈ xWx for some

x ∈ X and
y−1V y ⊆Wxx

−1VxxWx ⊆ O
which ends the proof. �

Lemma 4.13. Suppose that G is NSS and locally compact. There is a
neighborhood V of 1 such that V ⊆ U2 and for all x, y ∈ V , if x2 = y2, then
x = y.

Proof. Let O be a compact symmetric neighborhood of 1 in G such
that O contains no non trivial subgroup of G and O ⊆ U12. We choose a
symmetric open neighborhood W ⊆ U3 of 1 in G such that W 5 ⊆ O.
By Lemma 4.12 and since O is compact, there is an open symmetric neigh-
borhood V ⊆ U12 of 1 such that V 2 ⊆W and for all g ∈ O, gV g−1 ⊆W .
We next show that this V fulfills the desired condition. Let x, y ∈ V such
that x2 = y2, and let a := x−1y ∈ V 2 ⊆ W ⊆ O. To show that a = 1, we
will show that aZ ⊆ V , which implies that aZ is trivial since O contains no
nontrivial subgroup of G. As V ⊆ U5, we have that

axa = (x−1y)x(x−1y) = x−1y2 = x−1x2 = x

Next step is to show that for all n, an is defined, an ∈ O and an = xa−nx−1,
which we will do by induction. We have already shown the case n = 1.
Suppose the assertion is true for all m ∈ {1, . . . , n}. To show that an+1 is
defined, we can show that (ai, aj) ∈ Ω for all i, j ∈ {1, . . . , n} such that
i + j = n + 1 thanks to Lemma 1.28. Indeed, by the inductive hypothesis,
(ai, aj) ∈ O × O ⊆ Ω, which proves that an+1 is defined. We then have, as
O ⊆ U6:

an+1 = an.a = (xa−nx−1).(xa−1x−1) = xa−n−1x−1

The last equality following Lemma 1.28 item (4). Now we want to show
that an+1 ∈ O. There are two cases. The first one is when n+ 1 is even, say
n+1 = 2m. Then as x ∈ V which is symmetric, x−1 ∈ V ; moreover am ∈ O
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by induction hypothesis, so a−m is also in O which is symmetric. Since for
all g ∈ O, gV g−1 ⊆W , we get that a−mx−1am ∈W , and finally:

an+1 = am.am = xa−mx−1am ∈ xW ⊆W 2 ⊆ O

If n+ 1 is odd, then an+1 = an.a ∈W 2.W 2 ⊆ O.

This yields a subgroup aZ of G, with aZ ⊆ O. Thus a = 1 and so
x = y. �

Until further notice, let us fix U a special neighborhood of 1 in
G, as we know its existence by the last Lemma. Notice that then every
a ∈ µ \ {1} is U-pure.

∃ν ∈ N∗(aν /∈ µ)

For a ∈ G∗, we set ord(a) := ordU (a), the latter being the biggest
nonstandard integer ν such that aν ∈ U∗.

Lemma 4.14. Let a ∈ G∗. Then ord(a) is infinite iff a ∈ µ.

Proof. If a ∈ µ, then ord(a) is infinite thanks to Lemma 3.22. Con-
versely, suppose ord(a) is infinite. Then, by definition of ordU (a), we get
that for all k ∈ Z, ak is defined and ak ∈ U∗. As U is compact, ak ∈ G∗ns
(Theorem 3.15), so in particular st(ak) is defined. We see by induction and
with the help of Lemma 3.21 that st(ak) = (st(a))k, which is then in U for
all k ∈ Z. Since U is a special neighborhood, this implies that st(a) = 1, i.e.
a ∈ µ. �

3. A countable neighborhood basis of the identity

Suppose G to be NSS.

Let Q be an internal subset of G∗ such that Q ⊆ µ, 1 ∈ Q and Q is sym-
metric. If ν is such that for all internal sequence a1, . . . , aν of elements of
Q, a1. . . . .aν is defined, we set Qν to be the internal subset of G∗ containing
the products a1. . . . .aν . In this case we say that Qν is defined.
If, for all ν, Qν is defined and Qν ⊆ µ, we say that Q is degenerate. Let
U ⊆ U2 be a compact symmetric neighborhood of 1. If, for all ν, Qν

is defined and Qν ⊆ U∗, we define ordU (Q) = ∞. Otherwise, we define
ordU (Q) = ν if Qν is defined, Qν ⊆ U∗, and ν is the biggest element of N∗
for which this happens.
Like in Lemma 3.22, ordU (Q) > N and if ordU (Q) ∈ N∗, then QordU (Q)+1 is
defined.

We now set ord(Q) = ordU (Q), U a special neighborhood.
We extend it to the standard case in the following way: for a symmetric set
P ⊆ G such that 1 ∈ G, we define ord(P ) as the biggest integer n such that
Pn is defined and Pn ⊆ U . If there is not such a n, we set ord(P ) =∞. Set
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Vn := {x ∈ G : ord(x) ≥ n}
Recall that pn : G → G, a 7→ an if an is defined, is a continuous map

with open domain containing Un.

Lemma 4.15. (1) For all n, p−11 (U) ∩ · · · ∩ p−1n (U) ⊆ Vn
(2) (Vn : n ≥ 1) is a decreasing sequence of compact symmetric neigh-

borhoods of 1 in G
(3) ord(Vn)→∞ as n→∞
(4) {Vn : n ≥ 1} is a countable neighborhood basis of 1 in G

Proof. If x ∈ p−11 (U) ∩ · · · ∩ p−1n (U), ord(x) ≥ n so x ∈ Vn. To check
the other items, let σ ≥ N and consider the set

Vσ := {g ∈ G∗ : ord(g) ≥ σ}
Notice that Vσ is well an internal set, as it can be written Vσ = 〈Vσn〉, where
〈σn〉 =: σ. As we are still under the hypothesis that G is NSS, Lemma
4.14 brings that Vσ ⊆ µ. Thus, for all m and all x1, . . . , xm ∈ Vσ, the
product x1 . . . xm belongs to µ which is a group. In particular, if U is a
neighborhood of 1 in G, x1 . . . xm ∈ U∗; i.e. (Vσ)m ⊆ U∗. Hence by transfer,
if we take n sufficiently big, (Vn)m is defined for all m and is included in the
neighborhood U , which shows item (3).

�





CHAPTER 5

Local 1-parameter subgroups

Standard local 1-parameter subgroups are first defined, and the notion
is adapted to the nonstandard setting. Then local 1-parameter subgroups
are constructed from pure infinitesimals, using previous results. At the end
the local exponential map is introduced. This chapter is based on [5]; proofs
are more detailed.

1. Standard local 1-parameter subgroups

Definition 5.1. A local 1-parameter subgroup of G, abbreviated lo-
cal 1-ps of G, is a continuous map X : (−r, r) → G, for some r ∈ (0,∞),
such that

(1) image (X)⊆ Λ, and
(2) if r1, r2, r1 + r2 ∈ (−r, r), then (X(r1), X(r2)) ∈ Ω and

X(r1 + r2) = X(r1).X(r2)

Hence if X : (−r, r) → G is a local 1-ps of G, s ∈ (−r, r) and n an
integer such that ns ∈ (−r, r), then X(s)n is defined and X(ns) = X(s)n.

Definition 5.2. Let X,Y be local 1-parameter subgroups of G. We say
that X is equivalent to Y if there is r ∈ R>0 such that

r ∈ domain(X) ∩ domain(Y ) and X|(−r,r) = Y|(−r,r)

We let [X] denote the equivalence class of X with respect to this equivalence
relation. We also let

L(G) := {[X] : X is a local 1-ps of G}

In other words, L(G) is the set of germs at 0 of local 1-parameter sub-
groups of G. It is possible to define a ’scalar’ multiplication:

R× L(G) → L(G)
(s, [X]) 7→ s. [X]

as follows: let X ∈ [X] with X : (−r, r) → G. If s = 0, then 0.X = O,
where

O :
R → G
t 7→ 1

If s 6= 0, we define

sX :
(−r|s| ,

r
|s|) → G

t 7→ X(st)

55
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Then sX is a local 1-ps of G, and we let s. [X] := [sX]. It is obvious that the
definition is independant from the choice of a representative. We see that
for all [X] ∈ L(G) and s, s

′ ∈ R, 1. [X] = [X] and s.(s
′
. [X]) = (ss

′
). [X].

Let X1 and X2 be local 1-parameter subgroups of G such that [X1] =
[X2], and let t ∈ domain(X1) ∩ domain(X2). As X1 and X2 are equivalent,
there exists a common restriction of their domains on which they are equal:
so let r ∈ R>0 be such that X1|(−r,r) = X2|(−r,r) and choose n > 0 such that
t
n ∈ (−r, r). Then

X1(t) = (X1(
t

n
))n = (X2(

t

n
))n = X2(t)

Whence X1(t) = X2(t).
Henceforth, as we have the equality on the intersection of two different

domains, it makes sense to define, for [X] ∈ L(G),

domain([X]) :=
⋃

X∈[X]

domain(X)

2. From pure infinitesimals to local 1-parameter subgroups

Let U be a compact symmetric neighborhood of 1 such that U ⊆ U2,
as defined in Section 1 from Chapter 4, and let a ∈ µ being U -pure, τ :=
ordU (a) and 0 < ν = O(τ). Let r ∈ R>0. Then rν can be written as the
equivalence class 〈(rν)i〉. We can thus define the nonstandard integer part
floor(rν) componentwise :

floor(rν) = brνc := 〈b(rν)ic〉 , where b(rν)ic = max{n ∈ N : n ≤ (rν)i}

We define the set :

Σν,a,U := {r ∈ R>0 : abrνc is defined and ai ∈ U∗ if |i| ≤ brνc}

Since ν = O(τ), there is, by definition, m ∈ N \ {0} such that ν < mτ .
Let ro := 1/m. In this case br0νc ≤ τ = ordU (a), and thus, as a is U -pure,
it shows that Σν,a,U 6= ∅.

Now let rν,a,U := supΣν,a,U , with the convention that rν,a,U = ∞ if

Σν,a,U = R>0. Suppose s < rν,a,U . Then s ∈ Σν,a,U and absνc ∈ U∗, and

absνc+1 is defined: let i, j be such that i+ j = bsνc+ 1. By construction of
the set Σν,a,U , ai, aj are then in U∗, hence

(ai, aj) ∈ U∗ × U∗ ⊆ U∗2 × U∗2 ⊆ Ω∗

so ai+j = absνc+1 is defined. Then absνc+1 = absνc.a ∈ U∗.µ ⊆ G∗ns (Recall
that U∗ ⊆ G∗ns because U is compact; see Theorem 3.15).
By definition of the floor function, for s ∈ (−rν,a,U , 0), we have that

bsνc = −b(−s)νc or − b(−s)νc − 1
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Hence for such s, we have that absνc is defined and nearstandard as well.

Then observe that when both defined, st(absνc) = st(absνc+1):

absνc+1 = absνc.a hence, as a ∈ µ,

st(absνc+1) = st(absνc).st(a) = st(absνc)

Similarly, st(absνc−1) = st(absνc).

We are now ready for the following result :

Lemma 5.3. The map X : (−rν,a,U , rν,a,U ) → G given by X(s) :=

st(absνc) is a local 1-ps of G.

Proof. Let r := rν,a,U . The preceding arguments have already shown
that image(X) ⊆ U2. Let s1, s2 be such that s1, s2, s1 + s2 ∈ (0, r). First
note that

∀x, y ∈ R, bxc+ byc ≤ bx+ yc ≤ bxc+ byc+ 1

thus

bs1νc+ bs2νc = b(s1 + s2)νc or b(s1 + s2)νc − 1

By construction of Σν,a,U , abs1νc, abs2νc and ab(s1+s2)νc are defined and belong
to U∗. As

abs1νc+bs2νc = ab(s1+s2)νc or ab(s1+s2)νc−1

we obtain that

X(s1 + s2) = st(ab(s1+s2)νc)

= st(abs1νc+bs2νc)

= st(abs1νc.abs2νc)

= st(abs1νc).st(abs2νc) = X(s1).X(s2)

Now we consider the case s1, s2, s1 + s2 ∈ (−r, r) with s1.s2 < 0. We use
the last item of Lemma 1.28:
by definition, abs1νc, abs2νc are defined and in U∗, thus

st(abs1νc), st(abs2νc) ∈ U ⊆ U2

i.e. (st(abs1νc), st(abs2νc)) ∈ Ω and we can apply the Lemma, which gives us

st(ab(s1+s2)νc) = st(abs1νc).st(abs2νc)

i.e. X(s1 + s2) = X(s1).X(s2).
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It is easy to see that X(−s) = X(s)−1, so for s1, s2, s1 + s2 ∈ (−r, 0), we
have

X(s2 + s1) = X(−(−s1 − s2))
= X(−s1 − s2)−1

= (X(−s1).X(−s2))−1

= (X(s1)
−1.X(s2)

−1)−1 = X(s2).X(s1)

To show that X is continuous, we show that it is continuous at 0, which
is sufficient by Lemma 1.14. Let V be a neighborhood of 1 in G. As G
is supposed to be locally compact, there is V0 ⊆ V which is a compact
neighborhood of 1. Let i = o(ν), i.e. ∀n ∈ N, |i| < ν

n . Then ∀n ∈ N, | iν | <
1
n . If n is such that 1/n < r, |i| ≤ brνc and ai is defined and ai ∈ U∗.
Furthermore, if i = o(ν), then i = o(τ) because ν = O(τ). Hence, as
a ∈ G(τ), we get that ai ∈ µ ⊆ V ∗0 . Therefore X(s) ∈ V for s such that
|s| < 1

n ; i.e. X is continuous. �

From now on, let I := [−1, 1] ⊆ R.

Lemma 5.4. Suppose X : I → G is a continuous function such that for
all r, s ∈ I, if r + s ∈ I, then (X(r), X(s)) ∈ Ω and X(r + s) = X(r).X(s).
Further suppose that X(I) ⊆ U4. Then there exists ε ∈ R>0 and a local 1-ps
X : (−1− ε, 1 + ε)→ G of G such that X|I = X.

Proof. Omitted. One can see [5] for a proof of this Lemma ; the proof
is not difficult but quite long. �

3. The set L(G)

Let G be NSS, and let U be a special neighborhood. We first set a kind
of recapitulative Lemma.

Lemma 5.5. Suppose σ > N and a ∈ G(σ). Then:

(1) If a 6= 1, then a is U-pure and σ = O(ord(a));
(2) If i = o(σ), then ai is defined and ai ∈ µ;
(3) Let Σa := Σσ,a,U and ra := rσ,a,U . Let Xa : (−ra, ra) → G be

defined by Xa(s) := st(absσc). Then Xa is a local 1-ps of G.

Proof. (1) If ord(a) = o(σ), then aord(a) ∈ µ, and, since µ is

a subgroup, aord(a)+1 ∈ µ ⊆ U , which is a contradiction. Hence
σ = O(ord(a)).

(2) By the above item, if i = o(σ), then i = o(ord(a)), whence ai is
defined and ai ∈ µ since a is U-pure.

(3) Follows from Lemma 5.3
�



3. THE SET L(G) 59

Lemma 5.6. Suppose G is not discrete. Then L(G) 6= {O}.

Recall that O = [O], where O : R→ G, t 7→ 1.

Proof. Let a ∈ µ \ {1}, and σ := ord(a). Because a ∈ µ, we must
have σ > N; because a ∈ G(σ), we must have [Xa] ∈ L(G) , where Xa is as
defined in Lemma 5.5. Our aim is to show that [Xa] 6= O. We will do it by

showing that for every n ∈ N such that 1
n ∈ Σa, a

b 1
n
σc /∈ µ:

Let t :=
⌊
1
nσ
⌋
. Then t = 1

nσ − ε, with ε ∈ [0, 1)∗. Towards a con-

tradiction, suppose that at ∈ µ. Then since nt ≤ σ, ant is defined and
ant = (at)n ∈ µ by Lemma 1.28. Also nε = σ−nt ∈ N∗ and nε < n, whence
anε ∈ µ. But then aσ = ant+nε = ant.anε ∈ µ, a contradiction
(otherwise aord(a)+1 ∈ µ ⊆ U). �

Lemma 5.7. Let a ∈ G(σ) \ {1}. Then:

(1) a−1 ∈ G(σ) and [Xa−1 ] = (−1). [Xa]
(2) b ∈ µ⇒ bab−1 ∈ G(σ) and [Xbab−1 ] = [Xa]
(3) [Xa] = O⇔ a ∈ Go(σ)
(4) L(G) = {[Xb] |b ∈ G(σ)}

Proof. (1) µ is a subgroup so if ai ∈ µ, we have also (ai)−1 =
(a−1)i ∈ µ.

−Xa(t) = Xa(−t)

= st(ab−σtc)

= st(a−bσtc) = Xa−1(t)

(2) Let b ∈ µ, τ = ord(a) and a ∈ G(σ) \ {1}. Then, by Lemma 5.5
item (1), we get σ = O(ord(a)). Set i = o(ord(a)). We know
that ai ∈ µ and that baib−1 ∈ µ because µ is a group. Suppose
baib−1 = (bab−1)i. Therefore

(bab−1)i+1 = (bab−1)i.bab−1

= baib−1.bab−1 = bai+1b−1

Hence (bab−1)i is in µ, thus bab−1 ∈ G(σ). If r ∈ Σa, one also have

that (bab−1)brσc is defined and equals babrσcb−1, whence

st((bab−1)brσc) = st(babrσcb−1)

= st(b)st(abrσc)st(b−1) = st(abrσc)

because st(b) = st(b−1) = 1 as the two elements b, b−1 are in µ.
Finally [Xbab−1 ] = [Xa].

(3) We use Lemmas 4.2 and 5.5 item (1). Recall that a ∈ Go(σ) iff,
for r = O(ord(a)), ar is defined and ar ∈ µ. By Lemma 5.5,

σ = O(ord(a)). Let s ∈ (−ra, ra). Then absσc is defined and
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bsσc = O(ord(a)). Hence absσc ∈ µ, and then Xa = st(absσc) = 1.

If Xa(s) = 1, absσc ∈ µ, and by Lemma 4.2, a ∈ Go(σ).
(4) Suppose X ∈ L(G) and X ∈ X, and let (−r, r) := domain(X). We

then consider the nonstandard extension of X:

X :
(−r, r)∗ → G∗

〈si〉 7→
〈
st(absiσc)

〉
σ = 〈σi〉, 1

σ ∈ (−1, 1)∗. Set c := X( 1
σ ) ∈ µ, s < min{r, rc} and let

ε be an infinitesimal element of R∗ (i.e. ε ∈ µ(0)) such that, now

considering s ∈ R∗, we can write s = bsσc
σ + ε.

bsσc
σ
≤ s < bsσc

σ
+

1

σ

We will now show that X = [Xc].

X(s) = st(X(
bsσc
σ

+ ε))

= st(X(
bsσc
σ

)X(ε))

= st(X(
bsσc
σ

)).st(X(ε))

= st(X(
1

σ
)bsσc).1

= st(cbsσc)

= Xc(s)

Hence X and Xc agree on (−r, r) ∩ (−rc, rc).
�

4. The local exponential map

Let G be NSS and U be a special neighborhood. Recall that every
a ∈ µ \ {1} is then U-pure, that I = [−1, 1] ⊆ R, and that L(G) = {X =
[X] : X is a local 1− ps of G};

domainX =
⋃
X∈X

domain(X)

If domain(X) = (−r, r) then for ns ∈ (−r, r), X(ns) = X(s)n, and a scalar
multiplication is defined by setting:
for s 6= 0, sX : (−r|s| ,

r
|s|)→ G; t 7→ X(st),

for s = 0, s.X = O, where O : R→ G; t 7→ 1.

We consider the following sets:

K := {X ∈ L(G)|I ⊆ domain(X) and X(I) ⊆ U}
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and
K := {X(1)|X ∈ K}

We first show that K ”homotethically” covers all of L(G).

Lemma 5.8. For every X ∈ L(G), there is s ∈ (0, 1) such that s.X ∈ K.

Proof. (1) Let X ∈ L(G), and X : (−r, r) → G be a representa-
tive of X.
• If I * (−r, r), i.e. r ≤ 1. We take s1 such that 0 < s1 < r ≤ 1,

so

1 ≤ 1

r
<

1

s1
and r ≤ 1 <

r

s1
Then s1.X : (−rs1 ,

r
s1

)→ G contains I in its domain.
• If r > 1, we take s1 = 1.

(2) Now we want the image of I to be included in U . Since the map
s1.X is continuous, there is s2 such that 0 < s2 < 1, s2I is a
neighborhood of 0 and s1.X(s2I) ⊆ U , which can also be written
(s2.(s1.X))(I) ⊆ U . At the end we set s := s1.s2, and we have
s.X ∈ K.

�

Lemma 5.9. The map K → K, X 7→ X(1) is bijective.

Proof. The surjectivity is clear by construction of K. To check the
injectivity, let X1,X2 ∈ K, with representatives X1, X2, chosen in such a
way that I is included in both their domains (it is possible by definition
of domain(X)). Suppose X1(1) = X2(1). Then X1(

1
2)2 = X2(

1
2)2 and so

X1(
1
2) = X2(

1
2) since U is a special neighborhood. Inductively, we obtain

X1(
1
2n ) = X2(

1
2n ) for all n, hence for k ∈ Z such that k

2n ∈ I: X1(
k
2n ) =

X2(
k
2n ). The family ( k

2n ), as defined above, is dense in I around 0, so we can
find restrictions of X1 and X2 which are equal because they are continuous.
Finally [X1] = [X2]. �

From now on, we define the local exponential map to be:

E :K → K

X 7→ X(1)





CHAPTER 6

Local Gleason-Yamabe Lemmas

These Lemmas will be used later to put a group structure on L(G). They
show that multiplication of small elements is almost commutative and that
given a set A of small elements, one cannot move away from the identity
faster by using products of elements of A than by using powers of a single
element of A. They are shown by looking at elements of G acting on the
space of continuous functions from G to R, the support of which is compact.
In this chapter we will mainly follow the article [5], in which I.Goldbring
give a local adaptation of the original Lemmas from Gleason and Yamabe;
we give more detailed proofs. The section on the existence of a Haar mea-
sure is based on [8] and on [13].

Along this chapter, we let U andW be two neighborhoods of 1 in G,both
symmetric and compact, and such that UP ⊆ W ⊆ UM for P,M ∈ N two
suitably chosen integers. We also let Q ⊆ U be a symmetric neighborhood
of 1 such that N := ordU (Q) 6=∞. Then QN+1 is defined. We then set the
map ∆ := ∆Q:

∆ :

G → [0, 1]
1 7→ 0

x 7→
{

i
N+1 if x ∈ Qi \Qi−1 for 1 ≤ i ≤ N

1 if x /∈ QN

Then, for all x ∈ G, we get:

• ∆(x) = 1 if x /∈ U (because in that case, x /∈ QN ⊆ U)
• For a ∈ Q such that (a, x) ∈ Ω, |∆(ax)−∆(x)| ≤ 1

N+1

In fact, if x ∈ Qi, ax ∈ Qi+1 and |∆(ax)−∆(x)| =
∣∣∣ i+1−i
N+1

∣∣∣.
If x = 1, a 6= 1, |∆(ax)−∆(x)| =

∣∣∣ 1
N+1 − 0

∣∣∣.
If x ∈ QN and ax ∈ QN+1, |∆(ax)−∆(x)| =

∣∣∣N+1−N
N+1

∣∣∣.
If x /∈ QN and ax /∈ QN , |∆(ax)−∆(x)| = 0.
If x = 1 = ax, |∆(ax)−∆(x)| = 0.

Now we want to smooth out ∆. Recall that a topological space which is
locally compact and T2 is Tychonoff and consequently completely regular.
This is the case of our local group G, so it is possible to find a continuous
function τ : G → [0, 1] satisfying τ(1) = 1 and τ(x) = 0 for all x ∈ G \ U

63
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(see definition 1.1).

Note that it will be important later that τ depends on U and not on Q.

Next set the map θ := θQ : G→ [0, 1] as follows :

θ(x) =

{
sup{(1−∆(y))τ(y−1x) : y ∈ U} if x ∈ W

0 if x ∈ G \W

Lemma 6.1. The following properties hold for the above defined func-
tions.

(1) θ(x) = 0 if x /∈ U2

(2) θ is continuous
(3) 0 ≤ τ ≤ θ ≤ 1
(4) |θ(ax)− θ(x)| ≤ 1

N for a ∈ Q if (a, x) ∈ Ω

Proof. (1) To show that x /∈ U2 ⇒ θ(x) = 0, suppose θ(x) 6= 0.
Hence there is y ∈ U such that

(1−∆(y))τ(y−1x) 6= 0

so τ(y−1x) 6= 0 and ∆(y) 6= 1

then y−1x ∈ U and y ∈ QN ⊆ U , therefore x = yy−1x ∈ U2

(2) To establish the continuity of θ, we consider its extension in G∗.
Let x ∈ G. By Proposition 3.17, it suffices to show that θ(µ(x)) ⊆
µ(θ(x)). Recall that in G we have µ(x) = µx. An element in µ(x)
is then of the form ax, with a ∈ µ. Similarly µ(θ(x)) = µ(0) + θ(x)
in R∗, so we are looking for an element b ∈ µ(0) in R∗, such that
θ(ax) = b+ θ(x).
• First notice that if x /∈ W, then ax /∈ W∗:

If ax ∈ W∗, st(ax) ∈ W. But st(ax) = st(a)st(x) = 1.x = x.
In that case, θ(ax) = θ(x) = 0 by definition of the function θ.
• Suppose x ∈ W.

– If ax /∈ W∗, then x /∈ int(W): indeed, Theorem 3.11
tells us that x /∈ int(W) iff µ(x) *W∗, which is the case
since µ(x) = µx contains the element ax which is not in
W∗.
Note next that U2 ⊆ intW:
let x ∈ U2. Then µ.x ∈ (U3)∗ ⊆ W∗, so, thanks to
Theorem 3.11 again, we obtain that U2 ⊆ intW.
Consequently we conclude that x /∈ U2, thus θ(x) = 0.
As ax /∈ W∗, θ(ax) = 0 too.

– Now suppose ax ∈ W∗. Let Ty−1 be the left translation
in G where defined. As U×W ⊆ Ω, the function τ ◦Ty−1

is well defined and continuous on W, for y, y−1 ∈ U .
The difference |τ ◦Ty−1(ax)−τ ◦Ty−1(x)| then equals an
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infinitesimal element of R∗, which we call c. Therefore

θ(ax) = sup{(1−∆(y))τ(y−1ax) : y ∈ U}
= sup{(1−∆(y))(c+ τ(y−1x)) : y ∈ U}

Whence |θ(ax)− θ(x)| ≤ c supy∈U (1−∆(y)) ≤ c.
So θ(ax)− θ(x) is infinitesimal since c is.

(3) This is clear from the definition: it suffices to consider the different
cases for x to be in U , W \ U , or in G \ W. If x ∈ U , as 1 ∈ U , we
take y0 = 1. Then ∆(y0) = 0 and τ(x) = τ(y−10 x ≤ θ(x).

(4) Let a ∈ Q such that (a, x) ∈ Ω.
We want to show that |θ(ax)− θ(x)| ≤ 1

N .

• If x /∈ W, then ax /∈ U2, otherwise we would have x = a−1ax ∈
U3 ⊆ W, a contradiction. Hence we have θ(ax) = θ(x) = 0.
• If x ∈ W \ U3, then ax /∈ U2 (the reason here is similar as

the one used above). So θ(ax) = 0. Since x /∈ U3 ⇒ x /∈ U2,
θ(x) = 0.
• If x ∈ U3, then ax ∈ U4 ⊆ W.

We use the formula defining θ(x) and θ(ax). Let y ∈ U . Hence
(a−1, y) ∈ Ω, and, following a previous remark,

|(1−∆(a−1y))− (1−∆(y))| ≤ 1

N

Furthermore, y−1ax is defined because y−1a = (a−1y)−1 thanks
to Corollary 1.27, the latter lie inW, x ∈ W, and we have sup-
posed G globally inversible. Finally y−1ax = (a−1y)−1x, thus

(∗) = |(1−∆(y))τ(y−1ax)− (1−∆(a−1y)τ((a−1y)−1x))|
= |(1−∆(y))− (1−∆(a−1y)|.|τ(y−1ax)|

≤ 1

N
.1

Set

S := {(1−∆(y))τ(y−1x) : y ∈ U}

and

S′ := {(1−∆(a−1y)τ((a−1y)−1x)) : y ∈ U , a−1y ∈ U}

Recall that ∆(x) = 1 if x /∈ QN . Hence supS = supy∈QN {(1−
∆(y))τ(y−1x)}, henceforth supS′ = supS. Thus

|θ(ax)− θ(x)| = |θ(ax)− supS|
= |θ(ax)− supS′|

= (∗) ≤ 1

N

�
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1. The set C of continuous functions from G to R with compact
support

Now let f : G→ R. Recall that supp(f) := {x : f(x) 6= 0}. We consider
the set

C := {f : G→ R|f is continuous and supp(f) ⊆ W2}
C is a real vector space, which we equipp with the following norm :

||f || := sup{|f(x)| : x ∈ G}
Next, for f ∈ C, supp(f) ⊆ W and a ∈ W, we define a new function

a ∗ f as follows:

(a ∗ f)(x) =

{
f(a−1x) ifx ∈ W2

0 otherwise

Remarks :

• If a−1x /∈ W ∪W2, f(a−1x) = 0 because f ∈ C and supp(f) ⊆ W.
• Asking condition ”x ∈ W2” instead of ”a−1x ∈ W” (which would

directly imply that x ∈ W2, as x = aa−1x) allows to emphazise on
the fact that a ∗ f ∈ C.
• Let f, g ∈ C such that supp(f) ⊆ W and supp(g) ⊆ W. then
a ∗ (f + g) = a ∗ f + a ∗ g
• We will write af for a ∗ f , which is not to be confused with the

multiplication by a scalar.

Lemma 6.2. Suppose a, b ∈ W and f ∈ C are such that supp(f) ⊆ W
and supp(bf) ⊆ W. Then

(i) ||af || = ||f ||
(ii) a(bf) = (ab)f and ||(ab)f − f || ≤ ||af − f ||+ ||bf − f ||

Proof. (i)

||af || = sup{|f(a−1x)| : x ∈ W2}
= sup{|f(a−1x)| : x ∈ W2, a−1x ∈ W}because supp(f) ⊆ W
= sup{|f(y)| : y ∈ W}
= ||f ||

(ii) First part

Suppose x /∈ W2. Thus, by definition, ((ab)f)(x) = 0, and, since
a−1x /∈ W and supp(bf) ⊆ W, we get that (a(bf))(x) = 0.
Now suppose that x ∈ W2. Then

((ab)f)(x) = f((ab)−1x) = f((b−1a−1)x) and

(a(bf))(x) = (bf)(a−1x)

• If a−1x /∈ W2, then b−1a−1x /∈ W, else bb−1a−1x ∈ W2, so
b−1a−1x /∈ supp(f). (Recall that b−1a−1x is well defined and
equals (b−1a−1)x asW ⊆ UM .) In that case, ((ab)f)(x) = f(b−1a−1x) =
0, and (a(bf))(x) = 0.
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• If a−1x ∈ W2, then

(a(bf))(x) = (bf)(a−1x) = f(b−1(a−1x)) = ((ab)f)(x)

Second part

||(ab)f − f || = ||a(bf)− af + af − f ||
≤ ||a(bf)− af ||+ ||af − f ||
≤ ||a(bf − f)||+ ||af − f || = ||bf − f ||+ ||af − f ||

�

Back to the function θ which has been defined earlier, we see that

supp(θ) ⊆ U2 ⊆ W
Hence for any a ∈ W, we can consider the function aθ. We begin with an
equicontinuity result.

Lemma 6.3. For each ε ∈ R>0, there is a symmetric neighborhood Vε of
1 in G, independent of Q, such that Vε ⊆ U and ||aθ − θ|| ≤ ε for all a ∈ Vε
(5).

Proof. Let ε ∈ R>0. The function τ is continuous and W is compact,
so τ is uniformly continuous on W. Therefore there is a neighborhood Oε
of 1 in G such that for all g, h ∈ W, if gh−1 ∈ O∗ε then |τ(g)− τ(h)| < ε. By
Lemma 4.12 and because U ⊆ W, there exists a neighborhood Vε of 1 in G
such that for all y ∈ U ,

y−1Vεy ⊆ Oε
We will show that this choice for Vε does work. Let a ∈ Vε. We consider the
difference |(aθ)(x)− θ(x)| in different cases.

• If x /∈ W2, then (aθ)(x) = θ(x) = 0.
• If x ∈ W2 \W, θ(x) = 0.

– If a−1x /∈ W, (aθ)(x) = 0.
– If a−1x ∈ W, a−1x /∈ U2, else x ∈ U3 ⊆ W. So in that case we

also get (aθ)(x) = 0, this time through definition of θ.
• If x ∈ W\U3, then a−1x /∈ U2, whence again we get that (aθ)(x) =
θ(x) = 0.
• If x ∈ U3 (and thus a−1x ∈ U4 ⊆ W), then for all y ∈ U , since

y−1a−1x(y−1x)−1 = y−1a−1y ∈ Oε because a ∈ Vε
uniform continuity of θ gives us that

|τ(y−1a−1x)− τ(y−1x)| < ε

|(aθ)(x)− θ(x)| = |supy∈U (1−∆(y))τ(y−1a−1x)− supy∈U (1−∆(y))τ(y−1x)|
≤ supy∈U (1−∆(y))|τ(y−1a−1x)− τ(y−1x)|
≤ ε

�



68 6. LOCAL GLEASON-YAMABE LEMMAS

2. Local Haar measure

Set C+ := C ∩ {f : G → R+}. Hypotheses on U , W remain the same.
We begin with a few definitions.

Definition 6.4. A linear application F : C → R is called a local Haar
integral on G if F is not the constant function equal to 0, if F (C+) ⊆ R+

(F is positive), and if (left invariance) F (af) = F (f) for all f ∈ C such
that supp(f) ⊆ W and a ∈ W.

In this section we will give an idea of how to construct such an inte-
gral, by looking for a real-valued function F+ defined on C+, satisfying the
following conditions:

• F+ is not the constant function equal to 0
• F+(C+) ⊆ R+

• F+(rf) = rF+(f) for all f ∈ C+ and all r ∈ R+

• F+(f + g) = F+(f) + F+(g) for all f, g ∈ C+

• F+(af) = F+(f) for all f ∈ C+ such that supp(f) ⊆ W and a ∈ W
Indeed, if there exists a local Haar integral F we can take F+ := F|C+ .

Conversely, any F+ satisfying conditions above is uniquely prolongable in a
Haar integral in the following way:
For f ∈ C, set f+ : x 7→ max(f(x), 0) and f− : x 7→ max(−f(x), 0).
Then f = f+ − f−,with f+, f− ∈ C+ and we put F := F+(f+)− F+(f−).

As G is a T2 and locally compact topological space, if F is a linear ap-
plication from C to R, the Riesz representation theorem asserts that
there exists a Borel measure ξ on W2, which ’represents’ F , i.e. such that
for all f ∈ C, F (f) =

∫
fdξ.

This measure is called a local Haar measure. By the left-invariance of the
integral, the measure ξ is left-invariant in the sense that for any measurable
subset V ⊆ W, we have ξ(aV ) = ξ(V ).

Now let f, g ∈ C+ such that supp(g) 6= ∅. Let x ∈ W2.

• If x ∈ supp(g), there exists rx ∈ R+ such that f(x) < rxg(x).
• If x /∈ supp(g), let y ∈ supp(g). Then one can write

y = yx−1x = (xy−1)−1x =: axx

(Recall thatW ⊆ UM for a suitable M ≥ 6). As above, there exists
rx ∈ R+ such that f(x) < rxg(axx) = rxg(y).

Set Ux = {x′ ∈ W2 : f(x′) < rxg(x′)} for x ∈ supp(g)

and Ux = {x′ ∈ W2 : f(x′) < rxg(axx
′)} for x /∈ supp(g)

The Ux ’s cover W2 which is compact, thus there is a finite subcover
U1, . . . , Un, i.e. there exists r1, . . . , rn > 0, and a1, . . . , an ∈ G such that for
all x ∈ Ui, f(x) < rig(aix).
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In particular,

∃r1 > 0, . . . ,∃rn > 0, ∃a1 ∈ G, . . . ,∃an ∈ G, ∀x ∈ W2,

f(x) <
n∑
i=1

rig(aix) (F)

Next consider the greatest lower bound of the
∑n

i=1 ri’s corresponding
to all possible majorations:

(f : g) := inf{
n∑
i=1

ri : (F)}

Immediate properties:

(i)

(f : g) ≥ sup f

sup g

Indeed, f(x) <
∑n

i=1 rig(aix) (F), thus sup f ≤
∑n

i=1 risup g.
(ii) Let f1 ∈ C+ such that supp(f1) 6= ∅. Then

(f : g) ≤ (f : f1).(f1 : g)

(iii) (f1 : g) > 0, so the above inequality can be written

(f : g)

(f1 : g)
≤ (f : f1)

(iv) Suppose supp(f) 6= ∅. We thus also get (f1 : g) ≤ (f1 : f).(f : g), and

1

(f1 : f)
≤ (f : g)

(f1 : g)

Finally,
1

(f1 : f)
≤ (f : g)

(f1 : g)
≤ (f : f1)

So if we fix f, f1 ∈ C+ such that supp(f) 6= ∅ and supp(f1) 6= ∅, we can
define an associate ’interval’ :

If :=

[
1

(f1 : f)
; (f : f1)

]
⊆ R+ \ {0}

if f is not the constant function equal to 0 ; otherwise if f = 0, set If := {0}.
Then the product

P :=
∏
f∈C+

If

is compact by Tychonoff’s Theorem. If g ∈ C+ is not the constant function

equal to 0 and supp(g) 6= ∅, (f :g)
(f1:g)

∈ If for all f ; meaning that to each such

function g, we associate a point pg in P . Let V ⊆ W be a neighborhood
of 1 in G, and let C+

V be the set of elements of C+ the support of which is
nonempty and included in V .
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Since G is locally compact, C+
V 6= ∅ thanks to Urysohn Lemma 1.3. Let

FV := {pg : g ∈ C+
V }

Next consider the family (FV )V⊆W is a neighborhood of 1. This family has the
finite intersection property, hence by compacity of P there is a point p in
the intersection of all FV . This point can be written p = (rf )f∈C+ . Let∫
f := rf . This function,

∫
, satisfies conditions mentioned above. It is also

unique, up to multiplication by a positive real constant. For a proof, see
[13], or [8].

3. Lemmas

Fix a continuous function τ1 : G→ [0; 1] such that

τ1 :
x 7→ 1 if x ∈ U2

x 7→ 0 if x ∈ G \ U3

As for the function τ previously defined, it will be important later that τ1
depends only on U and not Q. Notice that 0 ≤ θ ≤ τ1, since supp(θ) ⊆ U2.
Take the unique Haar measure ξ such that

∫
τ1(x)dξ(x) = 1: since τ1 ∈ C,

there is b ∈ R such that
∫
τ1(x)dξ(x) = b, and by left-invariance we can

suppose that
∫
τ1(x)dξ(x) = 1.

We thus have

(M) 0 ≤
∫
θ(x)dξ(x) ≤ 1

By Lemma 6.3, there is an open neighborhood V := V 1
2
⊆ U of 1 in G,

independent of Q, and such that:

(6)

∀a ∈ V, ||aθ − θ|| ≤ 1

2
Since ||θ|| ≤ 1,it is also true for θ2: ||aθ2 − θ2|| ≤ 1

2 on V .
Hence, for a ∈ V ,

(aθ2(x)− θ2(x))|x=a = θ2(a−1a)− θ2(a) = 1− θ2(a) ≤ 1

2

Thus θ2(a) ≥ 1− 1
2 for all a ∈ V .

Now let Φ := ΦQ : G→ R defined as follows:

Φ :
x 7→

∫
θ(xu)θ(u)dξ(u) if x ∈ W

x 7→ 0 if x ∈ G \W
Φ is continuous as W is compact; moreover:

(7) supp(Φ) ⊆ U4 ⊆ W
(8) Φ(1) ≥ ξ(V )

2

(9) If a ∈ Q, then ||aΦ− Φ|| ≤ 1
N+1
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(10) For all a ∈ W, ||aΦ− Φ|| ≤ ||aθ − θ||

Proof. (7) By Lemma 6.1, item (1),supp(θ) ⊆ U2.

(8) Φ(1) =
∫
θ2(u)dξ(u) ≥ 1

2

∫
V dξ(u) = ξ(V )

2
(9) To verify (9) and (10), one needs to distinct cases such as in the

proof of Lemma 6.1; nevertheless, there is only one case where the
first clauseof the definition applies for both aΦ and Φ; in that case:

||aΦ− Φ|| = ||Φ(a−1x)− Φ(x)||

= ||
∫
θ(a−1xu)θ(u)dξ(u)−

∫
θ(xu)θ(u)dξ(u)||

= ||
∫

(θ(a−1xu)− θ(xu))θ(u)dξ(u)|| (N)

≤ ||
∫
θ(u)dξ(u)

N + 1
|| by Lemma 6.1 item (4)

≤ 1

N + 1
by (M)

where N = ordU (Q).
(10) Use (6) and (N)

�

By (7), supp(aΦ− Φ) ⊆ U5 ⊆ W for all a ∈ W, thus for all b ∈ W, the
function b(aΦ−Φ)) is defined. The next two Lemmas are the local versions
of the Gleason-Yamabe Lemmas.

Lemma 6.5. Let c, ε ∈ R+ \ {0}. Then there is a neighborhood U =
Uc,ε ⊆ U of 1 in G, independent of Q, such that for all a ∈ Q, b ∈ U , and
m ≤ cN ,

||b.m(aΦ− Φ)−m(aΦ− Φ)|| ≤ ε
and

||m(aΦ− Φ)|| ≤ c

Proof. Let a ∈ Q, b ∈ U . We have supp(b.m(aΦ−Φ)−m(aΦ−Φ)) ⊆
U6. Let x ∈ U6 and put y := b−1x. Hence

(aΦ− Φ)(x) =

∫ [
θ(a−1xu)− θ(xu)

]
θ(u)dξ(u)

and

b(aΦ− Φ)(x) = (aΦ− Φ)(y)

=

∫ [
θ(a−1yu)− θ(yu)

]
θ(u)dξ(u)

Recall that we are working with the assumption that UP ⊆ W for a suitably
large P , which can thus be chosen such that y−1x ∈ W. The latter permits
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to use left-invariance of the integral in order to replace u by x−1yu in the
function of u integrated in the first identity:

∫
y−1xf =

∫
f . This gives:

(aΦ− Φ)(x) =

∫ [
θ(a−1xx−1yu)− θ(xx−1yu)

]
θ(x−1yu)dξ(x−1yu)

=

∫ [
θ(a−1yu)− θ(yu)

]
θ(x−1yu)dξ(u)

Then

[b.(aΦ− Φ)− (aΦ− Φ)] (x) =

∫
[(aθ − θ)(yu)]

[
(θ − y−1xθ)(u)

]
dξ(u)

By Lemma 6.3, it is possible to choose the neighborhood Uc,ε small enough
to satisfy: for all b ∈ Uc,ε and x ∈ U6 we have y−1x ∈ U and

||θ − y−1xθ|| < ε

cξ(U6)

Then

[b.(aΦ− Φ)− (aΦ− Φ)] (x) ≤ 1

N

ε

cξ(U6)
.ξ(U6) ≤ ε

cN
≤ ε

For 1 < m ≤ cN , it is then clear. �

Lemma 6.6. With c, ε ∈ R+ \ {0}, let U := Uc,ε be as in the previous
Lemma and let a ∈ Q and m,n be such that m ≤ cN , n > 0, an is defined,
and ai ∈ U for i ∈ {0, . . . , n}. Then

||(m
n

)(anΦ− Φ)−m(aΦ− Φ)|| ≤ ε

Proof. We first show that m(anΦ−Φ) =
∑n−1

i=0 a
im(aΦ−Φ) by induc-

tion on n:
This is clear when n = 0 and n = 1. Suppose this is true at rank n− 1, for
n ≥ 1. Then

m(anΦ− Φ) = m(anΦ− an−1Φ + an−1Φ− Φ)

= m(anΦ− an−1Φ) +m(an−1Φ− Φ))

= man−1(aΦ− Φ) +

n−2∑
i=0

aim(aΦ− Φ)

= an−1m(aΦ− Φ) +

n−2∑
i=0

aim(aΦ− Φ)

=

n−1∑
i=0

aim(aΦ− Φ)

Hence

m(anΦ− Φ)− nm(aΦ− Φ) =

n−1∑
i=0

(aim(aΦ− Φ)−m(aΦ− Φ))
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Let i ∈ {1, . . . , n}. Then ai is defined and belongs to U , thus by Lemma 6.5

||aim(aΦ− Φ)−m(aΦ− Φ)|| ≤ ε
whence by summing:

||m(anΦ− Φ)−mn(aΦ− Φ)|| ≤ εn
�

Now we suppose that Q is a symmetric internal subset of µ such that
1 ∈ Q and N := ordU (Q) ∈ N∗. Notice that N > N.

The constructions made in this section transfer to the nonstandard set-
ting and yield internal continuous functions θ : G∗ → [0; 1]∗ and Φ : G∗ → R∗
satisfying the internal versions of (1)-(10) and Lemmas 6.5 and 6.6.

Lemma 6.7. Suppose a ∈ Q, ν = O(N), aν is defined and aσ ∈ µ for all
σ ≤ ν. Then ||ν(aΦ− Φ)|| is infinitesimal.

Proof. Let ε ∈ R, ε > 0. Let c ∈ R, c > 0 be such that ν ≤ cN . By
Lemma 6.6 with m = n = ν, we get:

||(aνΦ− Φ)− ν(aΦ− Φ)|| ≤ ε
(10) and Lemma 6.3 give us:

||aνΦ− Φ|| ≤ ||aνθ − θ|| < ε

hence ||ν(aΦ− Φ)|| ≤ 2ε. �





CHAPTER 7

Group structure on L(G)

In this section, we see some consequences of the Gleason-Yamabe Lem-
mas allowing to put a group structure on L(G). We begin with the local
versions, given by I.Goldbring, of the monadic forms of Gleason Yamabe
Lemmas given by J.Hirschfeld in [7]. The results are statements about
growth rates of powers of infinitesimals. Lemmas 7.1 to 7.4, Theorems 7.5
and 7.6 are from [5], we give more detailed proofs.

1. Local monadic form of the Gleason Yamabe Lemmas

Lemma 7.1. Let U ⊆ U2 be a compact symmetric neighborhood of 1.
Suppose Qν * µ for some ν = o(ordU (Q)). Then U contains a nontrivial
connected subgroup of G.

Proof. Like previously seen in Lemma 4.8, the set

GU (Q) = {st(a) : a ∈ Qν for some ν = o(ordU (Q))}
is a union of connected subsets of U , each containing 1. It is thus a connected
subset of U . It is closed under taking inverses by Lemma 1.28; and it is closed
under products:
let a, b be such that st(a), st(b) ∈ GU (Q). There are η, θ = o(ordU (Q)) such
that a ∈ Qη, b ∈ Qθ. Hence η + θ = o(ordU (Q)), a.b is defined and in
Qη+θ ⊆ U∗ ⊆ G∗ns. Thus we can consider st(a.b) which is in GU (Q) and
equals st(a).st(b). �

From now on, we suppose that G is NSS.

Lemma 7.2. Suppose ν ∈ N∗ \N and a1, . . . , aν is a hyperfinite sequence
such that ai ∈ Go(ν) for all i ∈ {1, . . . , ν}. Let Q := {1, a1, . . . , aν , a−11 , . . . , a−1ν }.
Then Qν is defined and Qν ⊆ µ.

Proof. (1) We begin by showing that if Qν is defined, then Qν ⊆
µ. Suppose not, i.e. suppose that Qν * µ. Then there is a neigh-
borhood U of 1 in G such that Qν , hence Qν+1 is not included in
U∗. It is possible to choose U symmetric and compact . Note that
Qν+1 * U∗ implies that ordU (Q) ≤ ν. Then fix a set W as in the
setting of the Gleason Yamabe lemmas, and take U small enough
to have U ⊆ W and UP ⊆ W. Recall W is symmetric, compact
and that W ⊆ UM .

75
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If necessary, by decreasing ν, and Q accordingly, it is possible
to obtain that ordU (Q) = ν: let ordU (Q) =: ν0 ≤ ν, and consider

Qν0 := {1, a1, . . . , aν0 , a−11 , . . . , a−1ν0 }

By Lemma 3.22, ν0 is infinite, and thus a1, . . . , aν0 is a hyperfinite
sequence. Then set ν1 := ordU (Qν0), and so on: we construct a
decreasing sequence (νi, Qνi)i∈J . Suppose the set J is not finite;
then by Lemma 3.4, as the internal set A := {ν0, . . . , νi, . . .} con-
tains arbitrarily small positive infinite elements, it contains a finite
element, which is a contradiction. We can thus choose i maximal
such that νi is minimal. Then νi+1 := ordU (Qνi) = νi.

Claim: Qν * µ⇒ Qνiνi * µ.
Suppose Qνiνi ⊆ µ and Qν * µ. Then there is b ∈ Q \Qνi such that

(a1 . . . aνi)b (which is well defined because it belongs to Qν+1) is
not in µ. This contradicts the fact that µ is a subgroup, since b ∈ µ
and a1 . . . aνi ∈ µ.
Let ν := νi. We will consider two cases:
• First, suppose that Qi ⊆ µ for all i = o(ν). As Qν * µ, we

can take b ∈ Qν such that st(b) 6= 1. We then choose U as
in the setting of the Gleason-Yamabe lemmas so that U ⊆ U
and st(b) /∈ U4: indeed we can find open neighborhoods of 1
Oi and Oj such that Oi ∩ st(b).Oj = ∅ (G is homogeneous and
T2), and then by regularity and by a consequence of Lemma
1.25, there is a compact symmetric neighborhood U ⊆ U of 1
such that U4 ⊆ Oi, henceforth st(b) /∈ U4.

Now set η := ordU (Q). Then ν = O(η), otherwise η = o(ν)
which would imply that Qη ⊆ µ by our hypothesis, contradict-
ing the fact that η := ordU (Q).

The Transfer Principle allows to extend the function constructed
in the previous section to the internally continuous function
Φ = ΦQ : G∗ → R∗, hence satisfying the internal versions of
all the properties and lemmas from that section. In particular,
Φ(b−1) = 0, since supp(Φ) ⊆ U4, and st(b) /∈ U4, henceforth

st(b−1) /∈ U4. Moreover, Φ(1) ≥ ξ(V )
2 ∈ R by property (8),

hence Φ(1) is not infinitesimal. Consequently, ||bΦ−Φ|| is not
infinitesimal, since

sup{|Φ(b−1x)− Φ(x)| : x ∈ G} ≥ |Φ(b−1.1)− Φ(1)|

However, if we take a hyperfinite sequence b1, . . . , bν from Q
such that b = b1 . . . bν , we get, by the Transfer Principle and
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Lemma 6.2:

||bΦ− Φ|| ≤
ν∑
i=1

||biΦ− Φ||

Let b0 ∈ {b1, . . . , bν} be such that

max{||biΦ− Φ|| : i ∈ {1, . . . , ν}} = ||b0Φ− Φ||
Then

∑ν
i=1 ||biΦ − Φ|| ≤ ν||b0Φ − Φ|| which is infinitesimal

by Lemma 6.7, contradicting the fact that ||bΦ − Φ|| is not
infinitesimal.
• Now suppose thatQi * µ for some i = o(ν). Then the compact

subgroup of G defined in Lemma 7.1

GU (Q) := {st(a) : a ∈ Qθ for some θ = o(ordU (Q))}
is nontrivial (and contained in U), which contradicts our as-
sumption that G is NSS.

(2) Next we want to show that Qν is defined. Let E ⊆ µ an internal
set.
Claim: Let c1, . . . , cη be an internal sequence such that for all

i, j ∈ {1, . . . , η}, cji is defined and cji ∈ E. Let

Rη = {1, c1, . . . , cη, c−11 , . . . , c−1η }

Then Rηη is defined.

The proof is made by internal induction on η. The case η = 1
is obvious. Suppose inductively that the claim holds for a given
η, and let c1, . . . , cη+1 be an internal sequence such that for all

i, j ∈ {1, . . . , η + 1}, cji is defined and cji ∈ E. Let Rη+1 =

{1, c1, . . . , cη+1, c
−1
1 , . . . , c−1η+1}, and d1, . . . , dη+1 ∈ Rη+1. The prod-

uct d1 . . . dη is defined by induction hypothesis. By the first part of
the proof, it is thus infinitesimal. Similarly, d1 . . . di and di . . . dη+1

are defined and infinitesimals for all i ∈ {2, . . . , η}; hence d1 . . . dη+1

is defined by Lemma 1.28. This shows that Rη+1
η+1 is defined.

Now let a1, . . . , aν be an internal sequence as in the statement

of the lemma. Taking E = {aji : i, j ∈ {1, . . . , ν}}, we obtain that
Qν is defined.

�

Lemma 7.3. Suppose U is a compact symmetric neighborhood of 1 in G
with U ⊆ U2. Let ν > N be such that for all i ∈ {1, . . . , ν}, ai and bi are
defined and ai ∈ U∗, bi ∈ µ. Then for all i ∈ {1, . . . , ν}, we have that (ab)i

is defined and (ab)i ∼ ai.

Proof. Let i ∈ {1, . . . , ν}. Then (ai, b) ∈ Ω∗ and, using Lemma 3.21,
st(aib) = st(ai)st(b) = st(ai), whence aib ∼ ai. By hypothesis, ai is defined,
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thus a−i is defined by Lemma 1.28. Recall that we supposed G to be locally
compact, hence, applying Theorem 3.15, we can consider the standard parts
of the above elements. Furthermore a−i = (ai)−1, and st(a−i) = st(ai)−1,
so (st(ai), st(a−i)) ∈ Ω, and we finally get (aib, a−i) ∈ Ω∗.

Similarly, (ai, ba−i) ∈ Ω∗. As (aib, a−i) ∈ Ω∗ and (ai, ba−i) ∈ Ω∗ for
all i ∈ {1, . . . , ν}, Lemma 1.28 allows to define the element bi := aiba−i.

Furthermore, using same technical tools, one can define the element bji :=
aibja−i for all i, j ∈ {1, . . . , ν}. Observe that bi ∈ µ for all i ∈ {1, . . . , ν}.

Claim 1: For all i, j ∈ {1, . . . , ν}, bji is defined and bji = aibja−i.

This claim is shown by internal induction on j. The case j = 1 has
already been proven. Suppose the assertion is true for all j′ ∈ {1, . . . , j}
and that j + 1 ≤ ν. Let k, l ∈ {1, . . . , j} be such that k + l = j + 1. By
the induction hypothesis, we have that bki is defined and bki = aibka−i. As
bk ∈ µ, bki ∈ µ. For the same reasons bli is defined and bli ∈ µ, therefore

(bki , b
l
i) ∈ Ω∗. Using Lemma 1.28, we obtain that bj+1

i is defined. Then,

since bji ∈ µ, we have

bj+1
i = bji .bi

= (aibja−i).(aiba−i)

= ((aibja−i).(ai)).(ba−i)

= (aibj).(ba−i)

= ((aibj).b)a−i)

= aibj+1a−i

We thus have proved Claim 1, from which it follows that bji ∈ µ for all
i, j ∈ {1, . . . , ν}, meaning that bi ∈ Go(ν) by Lemma 4.2. Consequently, by
Lemma 7.2, b1 . . . bi is defined and b1 . . . bi ∈ µ for all i ∈ {1, . . . , ν}. To end
the proof of the lemma, we need the following statement:

Claim 2: For all i ∈ {1, . . . , ν}, (ab)i is defined and (ab)i = (b1 . . . bi)a
i.

Once again we use internal induction, on i. For i = 1, this is clearly
true: indeed ab = (aba−1)a. So suppose the assertion holds for all j ∈ N∗
with j ≤ i and i+ 1 ≤ ν. To show that (ab)i+1 is defined, it suffices, thanks
to Lemma 1.28, to check that ((ab)k, (ab)l) ∈ Ω∗ for all k, l ∈ {1, . . . , i} with
k + l = i+ 1. By the induction hypothesis,

(ab)k = (b1 . . . bk)a
k ∼ ak and (ab)l = (b1 . . . bl)a

l ∼ al
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so the desired result is given by the fact that (ak, al) ∈ U∗ × U∗. Next note
that

ai+1b = (ai+1.b).(a−i−1ai+1)

= (ai+1ba−i−1)ai+1

= bi+1a
i+1

Now, using the induction hypothesis, we obtain:

(ab)i+1 = ((ab)i).(ab)

= ((b1 . . . bi)a
i).(ab)

= (b1 . . . bi).(a
i(ab))

= (b1 . . . bi).(a
i+1b)

= (b1 . . . bi).(bi+1a
i+1)

= (b1 . . . bi+1)a
i+1

�

Lemma 7.4. Let ν > N and a ∈ G(ν) be such that aν is defined and
ai ∈ G∗ns for all i ∈ {1, . . . , ν}. Suppose also that b ∈ µ is such that bν is
defined and bi ∈ G∗ns and ai ∼ bi for all i ∈ {1, . . . , ν}. Then a−1b ∈ Go(ν).

Proof. The proof begin with explaining a series of reductions that it is
possible to make without loss of generality. First, notice that a−1b ∈ G(ν):
Let i = o(ν). Since a ∈ G(ν), so is a−1, hence (a−1)i = a−i is defined and
belongs to µ. As bi ∼ ai, bi is also in µ. Consequently, using Lemma 7.3, we
obtain that (a−1b)i is defined and (a−1b)i ∼ a−i, i.e. a−1b ∈ G(ν).
Let V be a compact symmetric neighborhood of 1 in G such that V ⊆
U2. Then since ν = O(ordV (a−1b)) (otherwise ordV (a−1b) = o(ν) and

(a−1b)ordV (a−1b) ∈ µ, the latter being a group, we have a contradiction), if
ν > ordV (a−1b) we may replace ν with ordV (a−1b) and assume that (a−1b)i

is defined and belongs to G∗ns for all i ∈ {1, . . . , ν}.Let Q = {1, a, a−1, b, b−1}.
Suppose, towards a contradiction, that Qν is not defined, and let η ∈ N∗ \N
be the largest element of N∗ for which Qη is defined. If η = o(ν), Lemma 7.2
implies that Qi ⊆ µ for all i ∈ {1, . . . , η}. Henceforth Lemma 1.28 implies
that Qη+1 is defined, meaning that we have a contradiction. Thus ν = O(η);
therefore, by replacing ν by η if necessary, we can assume Qν is defined.

Next observe that if a ∈ Go(ν), then Lemma 7.3 gives us that (a−1b)i is
defined and (a−1b)i ∼ a−i ∈ µ for all i ∈ {1, . . . , ν}, i.e. the proof is done.
So now we suppose that a /∈ Go(ν) and by replacing ν by a smaller element
of its archimedean class, we may assume as well that aν /∈ µ.

Then we suppose, in order to yield a contradiction, that there is j ∈
{1, . . . , ν} such that (a−1b)j /∈ µ. Note that ν = O(j). Using properties of
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separation, we can choose compact symmetric neighborhoods U and W of 1
in G as in the previous section and so that

aν ∈ W∗ \ U∗ and (a−1b)j ∈ W∗ \ (U∗)4

Let σ = ordU (Q). By Lemma 7.2, ν = O(σ), otherwise, if we had σ = o(ν),
we would have that Qi ⊆ µ for all i ∈ {1, . . . , σ}, and, like above, using
Lemma 1.28, Qσ+1 would be defined, a contradiction.

Let φ = φQ : G∗ → R∗ be the internally continuous function constructed
in the previous section. Then, as (a−1b)j /∈ (U∗)4 ⊇ supp(φ)∗, we get that
φ((a−1b)j) = 0. For reasons similar to those seen in the proof of Lemma
7.2, ε := φ(1) > 0 is not infinitesimal. We also have

ε = φ(1) = |φ((a−1b)j)− φ(1)|
≤ ||(b−1a)jφ− φ||
≤ j||(b−1a)φ− φ||(Lemma 6.2)

= j||b((b−1a)φ− φ)||(left invariance)

= j||aφ− bφ||
= ||j(aφ− φ)− j(bφ− φ)||

To obtain a contradiction, we will show that ||j(aφ − φ) − j(bφ − φ)|| < ε.
By Lemma 6.6, there is a compact symmetric neighborhood U ⊆ U of 1 in
G such that for all k > 0 in N∗, if ai ∈ U∗ and bi ∈ U∗ for all i ∈ {1, . . . , k},
then

|| j
k

(akφ− φ)− j(aφ− φ)|| < ε

3

|| j
k

(bkφ− φ)− j(bφ− φ)|| < ε

3
These equalities work if k = min{ordU (a), ordU (b)}. For such an element
k, ν = O(k), hence j = O(k). Since k < ν, ak ∼ bk, so by continuity

|| j
k

(akφ− φ)− j

k
(bkφ− φ)|| = j

k
||akφ− bkφ|| ∼ 0

The combination of the three inequalities gives

||j(aφ− φ)− j(bφ− φ)|| < ε

which is a contradiction. �

2. Addition

Theorem 7.5. Suppose σ > N. Then

(1) G(σ) and Go(σ) are normal subgroups of µ.
(2) If a ∈ G(σ) and b ∈ µ, then aba−1b−1 ∈ Go(σ)
(3) G(σ)/Go(σ) is abelian.

Proof. (2) clearly implies (3), hence we only need to show (1) and (2).
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(1) Let a, b ∈ G(σ) (resp. a, b ∈ Go(σ)). By Lemma 1.28, a−1 ∈ G(σ)
(resp. Go(σ)), and then, by Lemma 7.3, (a−1b)ν is defined and
(a−1b)ν ∼ aν ∈ µ for all ν = o(σ) (resp. ν = O(σ)).

By Lemma 5.7, G(σ) is a normal subgroup of µ. Let a ∈ Go(σ)
and b ∈ µ. Let us show by internal induction on η ≤ σ that (bab−1)η

is defined and equal to baηb−1, as it will show in particular that
bab−1 ∈ Go(σ): suppose the assertion is true for all ν ≤ η. Then

(bab−1)η+1 = (bab−1)η(bab−1)

= baηb−1.bab−1

= baη+1b−1

(2) Let a ∈ G(σ) and b ∈ µ. We know that ba−1b−1 ∈ G(σ). Let
U ⊆ U2 be a compact symmetric neighborhood of 1. As ordU (a) >
N and ordU (ba−1b−1) > N, it is possible to choose τ ∈ {1, . . . , σ}
such that σ = O(τ), aτ and (ba−1b−1)τ are defined, and ai ∈ U∗
for i ∈ {1, . . . , τ}. Like above, it is then possible to prove by
internal induction that for i ∈ {1, . . . , τ}, (ba−1b−1)i = ba−ib−1,
hence (ba−1b−1)i ∈ µ, i.e., using Lemma 4.2, ba−1b−1 ∈ Go(σ). In
particular, (ba−1b−1)i ∈ µ for all i ∈ {1, . . . , σ}. Henceforth, for
those i’s, a−i ∼ (ba−1b−1)i and, with Lemma 7.4 applied to a−1

and ba−1b−1, we obtain aba−1b−1 ∈ Go(σ).

�

Remark : if X ∈ L(G) and σ > N, then X( 1
σ ) ∈ G(σ). This is because

if i = o(σ), then (X( 1
σ ))i = X( iσ ) ∈ µ.

Theorem 7.6. The map S : L(G)→ G(σ)/Go(σ) defined by

S(X) = X(
1

σ
)Go(σ)

is a bijection.

Proof. Suppose X,Y ∈ L(G) and S(X) = S(Y). Set a := X( 1
σ ) and

b := Y( 1
σ ). By Lemma 7.4, a−1b ∈ Go(σ). Let U ⊆ U2 be a compact

symmetric neighborhood of 1, and let τ := min{ordU (a), σ}. Since for
i ∈ {1, . . . , τ}, ai ∈ U∗ and (a−1b)i ∈ µ, we can use Lemma 7.3, so that for
i ∈ {1, . . . , τ}, (a.(a−1b))i is defined, nearstandard and infinitely close to ai.
That means for all i ∈ {1, . . . , τ} such that i

σ ∈ domain(X) ∩ domain(Y),

we have X( iσ ) = Y( iσ ). Now notice that σ = O(τ) (otherwise aordU (a) ∈ µ),
hence X = Y (as they have equal reductions), i.e S is injective.

Next let b ∈ G(σ)\Go(σ). By Lemma 5.3, one can consider the 1-ps Xb of

G defined on (−rb,σ,U , rb,σ,U ) by Xb(t) = st(bbtσc). Then let b1 := Xb(
1
σ ) ∈ µ.

Recall that σ = O(τ) iff τ
σ is finite iff there is r ∈ R, | τσ | < r. We can thus

pick τ ∈ {1, . . . , σ} such that σ = O(τ) and τ
σ ∈ domain(Xb). Note that



82 7. GROUP STRUCTURE ON L(G)

the latter means bτ1 is defined and belongs to µ. Hence, for i ∈ {1, . . . , τ}, bi
and bi1 are defined and bi ∼ bi1. Then by Lemma 7.4, b−1b1 ∈ Go(τ) ⊆ Go(σ)
(see Lemma 4.2), hence bGo(σ) = b1G

o(σ), i.e. S is surjective. �

Set

+σ :
L(G)× L(G) → L(G)

(X,Y) 7→ S−1(S(X).S(Y))

Corollary 7.7. Let X,Y ∈ L(G), and t ∈ domain(X +σ Y). If ν is
such that ν

σ ∼ t, then

(X +σ Y)(t) ∼
[
X(

1

σ
)Y(

1

σ
)

]ν
Furthermore L(G) equipped with the operation +σ is an abelian group.

Proof. By Lemma 5.7: [Xa] = O iff a ∈ Go(σ), hence O is the identity
element of L(G). Likewise, Lemma 5.7 gives the inverse element of [Xa],
namely [Xa−1 ]. The associativity is clear:

(X +σ Y) +σ Z = S−1(S(S−1(S(X).S(Y))).S(Z))

= S−1(S(X).S(Y).S(Z))

= X +σ (Y +σ Z)

The fact that it is abelian is given by Theorem 7.5 item (3).
�

3. Sketch of proof of local H5

Suppose G to be NSS. The first step is to equip L(G) with a topology
so as to make it a locally compact real vector space: a base of the topology
is given by the sets

B(C,U) := {X ∈ L(G) : C ⊆ domain(X) and X(C) ⊆ U}
C ⊆ R compact and U open in G. (It is in fact the subspace topology of
the ’compact-open’ topology of the space C(R, G) consisting of continuous
functions from R to G.

Having constructed local 1-ps from infinitesimals the powers of which
grow neither too fast nor too slow allow to obtain that a neighborhood of
the identity in G is ruled by local 1-ps (whereas if G is not NSS, a net of
small connected subgroups is obtained instead): the local exponential map
is a homeomorphism and K = {X(1) : X ∈ K} is a compact neighborhood of
1 in G. This shows that L(G) is locally compact, hence, as a locally compact
real vector space, is then a finite dimensional real vector space by a theorem
of Riesz.

I.Goldbring then shows the local H5 for NSS local groups by using a
local version of the Adjoint Representation Theorem, namely that there is
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a morphism of local groups Ad : G|U6 → L(G), g 7→ Adg : L(G) → L(G),
Adg([Xa]) = [Xgag−1 ]. The kernel is abelian and is a normal sublocal group
of G′ = G|U6. Under other satisfied conditions involving the notion of a lo-
cal quotient, he then uses a theorem of Kuranishi to show that a restriction
of G is a local Lie group.

At the end he shows that locally Euclidean groups are NSS, first by
showing that locally Euclidean local groups are NSCS, and then that locally
connected NSCS local groups are NSS.
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[2] N.Bourbaki Groupes et algèbres de Lie, Chapitres 2-3, Diffusion C.C.L.S., Paris, 1972.
[3] C.C.Chang, H.J.Keisler Model theory, Studies in Logic and the Foundations of Math-

ematics, volume 73, North Holland, 1973.
[4] J.Flum and M.Ziegler Topological Model Theory, Lecture Notes in Mathematics, 769,

Springer-Verlag, 1980.
[5] I.Goldbring Hilbert’s fifth problem for local groups, Annals of Mathematics, 172 (2010),

1269-1314.
[6] P.J.Higgins Introduction to topological groups, London Mathematical Society Lecture

Note Series 15, Cambridge University Press, 1974.
[7] J.Hirschfeld The nonstandard treatment of Hilbert’s fifth problem, Transactions of the

AMS, Vol.321, No.1. (Sep. 1990), 379-400.
[8] G.Hochschild La structure des groupes de Lie, Monographies universitaires
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